Example #1
0
def mutation(model, env):

    # get the batteries from the model
    batteries = model.modelBatteries

    # get a random battery
    randomBatteries = (random.randint(0,
                                      len(batteries) - 1),
                       random.randint(0,
                                      len(batteries) - 1))
    batterySendingHouse = batteries[randomBatteries[0]]

    # set the upperbounds for the houses randomizer
    setUpperboundBattery1 = len(batterySendingHouse.houses)

    # get a random house
    randomHouseId = random.randint(0, (setUpperboundBattery1 - 1))

    # get the houses on the random places
    house1 = batterySendingHouse.houses[randomHouseId]

    # get battery receiving the house
    batteryReceivingHouse = batteries[randomBatteries[1]]

    # add the house to the other battery
    batteries[randomBatteries[1]].houses.append(house1)
    houses = batterySendingHouse.houses
    houses.pop(randomHouseId)
    batteries[randomBatteries[0]].houses = houses

    # return the model
    returnModel = Model(batteries)
    returnModel.calculateCosts(env.distanceTable)
    return returnModel
Example #2
0
def makeModel(node, env):

    # make model to calculate cost of node
    nodeModelBatteries = env.createModelBatteries()

    # append each item of node to modelbatteries
    for i in range(1, len(node)):
        nodeModelBatteries[node[i] - 1].houses.append(env.houses[i - 1])

    # create and return Model
    nodeModel = Model(nodeModelBatteries)
    nodeModel.calculateCosts(env.distanceTable)

    return nodeModel
Example #3
0
def randomize(env):

    modelBatteries = []

    # create the array of batteries with the id starting at 1
    for i in range(0, len(env.batteries)):
        maxCap = env.batteries[i].maxCapacity
        battery = Model.Battery(i + 1)
        modelBatteries.append(battery)

    # assign every house to a random battery of which the capacity is still sufficient
    listOfHouses = env.houses
    random.shuffle(listOfHouses)

    # assign random battery to every house
    for house in listOfHouses:
        batIndexes = []
        for i in range(0, len(env.batteries)):
            batIndexes.append(i)
        assignToRandomBattery(batIndexes, env.batteries, house, modelBatteries)

    # check if every house is connected
    totalHouses = 0
    for battery in modelBatteries:
        totalHouses += len(battery.houses)

    if totalHouses == len(env.houses):

        # assign all the values into a model
        model = Model(modelBatteries)

        # calculate the costs of this option
        model.calculateCosts(env.distanceTable)

        return model

    else:
        return False
Example #4
0
def genomeToModel(genome, env):

    # create the array of batteries with the id starting at 1
    modelBatteries = []
    for i in range(0, len(env.batteries)):
        battery = Model.Battery(i + 1)
        modelBatteries.append(battery)

    # create child model
    newModel = Model(modelBatteries)

    for battery in newModel.modelBatteries:
        battery.setMaxCapacity(env)

    # fill list of houses belonging to battery in new model according to genome
    for gene in genome:
        for house in env.houses:
            if house.idHouse == (gene[0]):
                corHouse = house
                newModel.modelBatteries[gene[1] - 1].houses.append(corHouse)

    newModel.calculateCosts(env.distanceTable)
    return newModel
Example #5
0
def depthFirstBnB(env):

    # create the array of batteries for model
    modelBatteries = env.createModelBatteries()

    # initialize algorithm model
    depthFirstModel = Model(modelBatteries)

    # initiliaze upperbound at random cost, levels and solution
    model = runRandom(env)
    model.calculateCosts(env.distanceTable)
    upperBound = model.cost
    levels = len(env.houses)
    solution = []

    # create stack with root houseNode
    depthFirstStack = []
    depthFirstStack.append(np.array([0]))

    while len(depthFirstStack) > 0:

        # select last item and pop it
        node = depthFirstStack.pop()

        # create array to put best childnode on top of the stack
        tempCostNodes = []

        # create all children
        lenModelBatteries = len(modelBatteries)
        for i in range(0, lenModelBatteries):

            # create new houseNode
            newNode = np.append(node, modelBatteries[i].idBattery)

            # check for legit solution if all houses are connected
            if (len(newNode) - 1) == levels:
                if checkCapacity(newNode, env.batteries, modelBatteries,
                                 env.houses):
                    newModel = makeModel(newNode, env)

                    # set new upperbound for Branch-n-Bound and add solution to list
                    if newModel.cost < upperBound:
                        upperBound = newModel.cost
                        solution = newNode.tolist()

            # check if there isn't over capacity
            else:
                if checkCapacity(newNode, env.batteries, modelBatteries,
                                 env.houses):
                    newModel = makeModel(newNode, env)

                    # check if current node isn't already higher than upperbound
                    if newModel.cost < upperBound:
                        tempCostNodes.append([
                            env.distanceTable[len(newNode) - 1][newNode[-1]],
                            newNode
                        ])

                else:
                    continue

        # childnode with lowest cost on top of the stack
        tempCostNodes = sorted(tempCostNodes, key=itemgetter(0), reverse=True)
        tempCostNodes = [node[1] for node in tempCostNodes]
        depthFirstStack.extend(tempCostNodes)

    # make depth first model and update battery capacities
    lenSolution = len(solution)
    for i in range(1, lenSolution):
        depthFirstModel.modelBatteries[solution[i] - 1].houses.append(
            env.houses[i - 1])
        depthFirstModel.modelBatteries[solution[i] -
                                       1].curCapacity += env.houses[i - 1].cap

    depthFirstModel.calculateCosts(env.distanceTable)
    return depthFirstModel