def test_try_to_move_back_in_time(self): # Create a nice event to make time fly event = Event(10) event.perform(self.world) # Create an event that tries to move back in time wrong_event = Event(5) self.assertRaises(ValueError, wrong_event.perform, self.world)
def JSONtoEvent(j: json): event = Event(j["min"], j["max"], j["Location"], j["Time"], j["Title"], j["Description"]) persons = [] for participant in j["Participants"]: persons.append( Participant(participant[0]["Email"], participant[0]["Name"])) event.addParticipants(persons) return event
def main(): granularity = 15 # TODO allow change of granularity dt_start = sys.argv[1] dt_end = sys.argv[2] tx_location = sys.argv[3] tx_rrule = sys.argv[4] temp = open("C:/wamp/www/mesa/python/temp1.json", "r") # TODO make relative path bl_calendars = json.loads(temp.read()) temp.close() temp = open("C:/wamp/www/mesa/python/temp2.json", "r") bl_settings = json.loads(temp.read()) temp.close() rrule = parse_rrule(tx_rrule) # TODO create use for rrule priorities = parse_priorities(bl_settings) original_event = Event( "blevent", { "blEvent": { "start_time": dt_start.replace(" ", "T") + "Z", "end_time": dt_end.replace(" ", "T") + "Z", "location": tx_location, "travel_time": 0 } }) calendar_set = construct_calendar_set(bl_calendars) point_list = construct_point_list(calendar_set, granularity, original_event, bl_settings) cost_output = smallest_cost(point_list, priorities, original_event, granularity, tx_location, calendar_set) print(cost_output)
def test_add_event(self): shuffled_events = [Event(time) for time in range(10, 41, 10)] random.shuffle(shuffled_events) for event in shuffled_events: self.world.add_event(event) self.assertSequenceEqual([event.time for event in self.world.stack], range(10, 41, 10))
def find_events(): events_list = [] try: events_url = "https://api.betsapi.com/v2/events/upcoming?token={}&sport_id=151?day=TODAY".format( os.environ.get("BETS_API_TOKEN")) events = requests.get(events_url).json() current_epoch_time = int(time.time()) events_access = events["results"] except: logging.info("Couldnt get upcoming events") else: for events_data in events_access: try: event_id = events_data["id"] event_time = events_data["time"] home_team = events_data["home"]["name"] away_team = events_data["away"]["name"] league = events_data["league"]["name"] except: logging.debug( "Could not retrieve event id and time in find_events()") else: # get events within the next 2 hours (7200 sec) if (int(event_time) - int(current_epoch_time)) > 0 and ( int(event_time) - int(current_epoch_time)) < 7200: events_list.append( Event(event_id, event_time, home_team, away_team, league)) # if we find a good event/bet add it for event in events_list: try: oddsUrl = "https://api.betsapi.com/v2/event/odds?token={}&event_id={}&odds_market=1&source=pinnaclesports".format( os.environ.get("BETS_API_TOKEN"), event.eventId) odds = requests.get(oddsUrl).json() odds_access = odds["results"]["odds"]["151_1"] homeOddsNow = float(odds_access[0]["home_od"]) homeOddsEarlier = float(odds_access[1]["home_od"]) awayOddsNow = float(odds_access[0]["away_od"]) awayOddsEarlier = float(odds_access[1]["away_od"]) if homeOddsNow < (homeOddsEarlier * 0.95): if do_bet_exist(event.eventId) == False: place_bet(event.eventId, "H", homeOddsNow, 50) logging.info( "Placed bet on home team {} vs {} with id {}".format( event.home_team, event.away_team, event.eventId)) if awayOddsNow < (awayOddsEarlier * 0.95): if do_bet_exist(event.eventId) == False: place_bet(event.eventId, "A", awayOddsNow, 50) logging.info( "Placed bet on away team {} vs {} with id {}".format( event.home_team, event.away_team, event.eventId)) except: logging.debug("No event odds in find_events()")
def endElement(self, tag): if tag == "trace": if self.log in self.logs: if self.tracename in self.logs[self.log]: print(self.log) print(self.tracename) raise RuntimeError("Trace already exists") else: self.logs[self.log] = {} self.start_events[self.log] = collections.defaultdict(int) self.end_events[self.log] = collections.defaultdict(int) if (self.lifecycle_options['lifecycle_exists'] == 0): self.start_events[self.log][self.event_start] += 1 self.end_events[self.log][self.event_end] += 1 elif (self.lifecycle_options['lifecycle_exists'] == 1 and len(self.lifecycle_options['lifecycle_options']) == 1): self.start_events[self.log][self.event_start] += 1 self.end_events[self.log][self.event_end] += 1 else: self.start_events[self.log][self.event_start_start] += 1 self.end_events[self.log][self.event_end_start] += 1 self.logs[self.log][self.tracename] = Trace( self.log, self.tracename, self.trace) self.event_start = None self.event_end = None self.event_start_start = None self.event_end_start = None self.tracename = None self.trace = [] if tag == "event": self.event_map[self.attrib['concept:name']] += 1 if 'lifecycle:transition' not in self.attrib: self.lifecycle_options[ 'lifecycle_exists'] = 0 # if there is at least one event without a lifecycle transition, then we cannot use lifecycles. else: self.lifecycle_options['lifecycle_options'].add( self.attrib['lifecycle:transition']) if self.lifecycle_options[ 'lifecycle_exists'] == 0 or self.lifecycle_options[ 'lifecycle_exists'] == 1 and self.attrib[ 'lifecycle:transition'] == "start": if not self.event_start_start: self.event_start_start = self.attrib['concept:name'] self.event_end_start = self.attrib['concept:name'] if self.lifecycle_options[ 'lifecycle_exists'] == 0 or self.lifecycle_options[ 'lifecycle_exists'] == 1 and self.attrib[ 'lifecycle:transition'] == "complete": if not self.event_start: self.event_start = self.attrib['concept:name'] self.event_end = self.attrib['concept:name'] self.trace.append(Event(self.log, self.tracename, self.attrib)) self.attrib = None self.tag = tag
def get_all_events(self, calendar_id: int, strip_private=False) -> List[Event]: ''' Return list of Event objects that match the provided calendar_id. If strip_private is True, all non-private events will be returned. ''' cid: Tuple = (calendar_id, ) if strip_private: self._execute( "SELECT * FROM events WHERE calendar_id = ? AND private = 0", cid) else: self._execute("SELECT * FROM events WHERE calendar_id = ?", cid) results = self._get_all_results() return [Event(*event) for event in results] # list comps are so comfy unf
def build_workout_sequence(self, duration, profile): # determine workout format exercise_sequence = [] if self.profile['warmup']: duration -= 2 exercise_sequence.append(Event(self.make_exercise('Warmup'), 120)) total_rounds = int(np.floor(duration * 60 / 200)) total_exercises = total_rounds * 2 exercises_list = self.do_sampling(profile, total_exercises) def divide_chunks(l, n): for i in range(0, len(l), n): yield l[i:i + n] num_humans = 1 if 'num_humans' not in profile else profile['num_humans'] #this is reaaly only a 2 human format chunksize = 2 for chunk in divide_chunks(exercises_list, chunksize): if len(chunk) < chunksize: continue #non multiple number of minutes if num_humans == 1: for iter in range(2): exercise_sequence.append(Event(chunk[0], 40)) exercise_sequence.append(Event(chunk[1], 40)) exercise_sequence.append( Event(self.make_exercise('Rest'), 20)) else: for iter in range(2): exercise_sequence.append(Event((chunk[0], chunk[1]), 40)) exercise_sequence.append(Event((chunk[1], chunk[0]), 40)) exercise_sequence.append( Event(self.make_exercise('Rest'), 20)) exercise_sequence = exercise_sequence[:-1] #remove final rest # #30 reps of each exercise; do full circuit twice return exercise_sequence
def get_event(self, event_id: int) -> Event: ''' Return a single event, selected by event_id. ''' eid: Tuple = (event_id, ) self._execute("SELECT * FROM events WHERE event_id = ?", eid) return Event(*self._get_result())
def project(XK, XV, LorY, surfSrc, surfTar, K_diag, V_diag, IorE, self, param, ind0, timing, kernel): if param.GPU == 1: tic = cuda.Event() toc = cuda.Event() else: tic = Event() toc = Event() REAL = param.REAL Ns = len(surfSrc.triangle) Nt = len(surfTar.triangle) L = numpy.sqrt(2 * surfSrc.Area) # Representative length tic.record() K = param.K w = getWeights(K) X_V = numpy.zeros(Ns * K) X_Kx = numpy.zeros(Ns * K) X_Ky = numpy.zeros(Ns * K) X_Kz = numpy.zeros(Ns * K) X_Kc = numpy.zeros(Ns * K) X_Vc = numpy.zeros(Ns * K) NsK = numpy.arange(Ns * K) X_V[:] = XV[NsK / K] * w[NsK % K] * surfSrc.Area[NsK / K] X_Kx[:] = XK[NsK / K] * w[NsK % K] * surfSrc.Area[NsK / K] * surfSrc.normal[NsK / K, 0] X_Ky[:] = XK[NsK / K] * w[NsK % K] * surfSrc.Area[NsK / K] * surfSrc.normal[NsK / K, 1] X_Kz[:] = XK[NsK / K] * w[NsK % K] * surfSrc.Area[NsK / K] * surfSrc.normal[NsK / K, 2] X_Kc[:] = XK[NsK / K] X_Vc[:] = XV[NsK / K] toc.record() toc.synchronize() timing.time_mass += tic.time_till(toc) * 1e-3 tic.record() C = 0 getMultipole(surfSrc.tree, C, surfSrc.xj, surfSrc.yj, surfSrc.zj, X_V, X_Kx, X_Ky, X_Kz, ind0, param.P, param.NCRIT) toc.record() toc.synchronize() timing.time_P2M += tic.time_till(toc) * 1e-3 tic.record() for C in reversed(range(1, len(surfSrc.tree))): PC = surfSrc.tree[C].parent upwardSweep(surfSrc.tree, C, PC, param.P, ind0.II, ind0.JJ, ind0.KK, ind0.index, ind0.combII, ind0.combJJ, ind0.combKK, ind0.IImii, ind0.JJmjj, ind0.KKmkk, ind0.index_small, ind0.index_ptr) toc.record() toc.synchronize() timing.time_M2M += tic.time_till(toc) * 1e-3 tic.record() X_V = X_V[surfSrc.sortSource] X_Kx = X_Kx[surfSrc.sortSource] X_Ky = X_Ky[surfSrc.sortSource] X_Kz = X_Kz[surfSrc.sortSource] X_Kc = X_Kc[surfSrc.sortSource] X_Vc = X_Vc[surfSrc.sortSource] toc.record() toc.synchronize() timing.time_sort += tic.time_till(toc) * 1e-3 param.Nround = len(surfTar.twig) * param.NCRIT K_aux = numpy.zeros(param.Nround) V_aux = numpy.zeros(param.Nround) AI_int = 0 ### CPU code if param.GPU == 0: K_aux, V_aux = M2P_sort(surfSrc, surfTar, K_aux, V_aux, self, ind0.index_large, param, LorY, timing) K_aux, V_aux = P2P_sort(surfSrc, surfTar, X_V, X_Kx, X_Ky, X_Kz, X_Kc, X_Vc, K_aux, V_aux, self, LorY, K_diag, V_diag, IorE, L, w, param, timing) ### GPU code elif param.GPU == 1: K_gpu = cuda.to_device(K_aux.astype(REAL)) V_gpu = cuda.to_device(V_aux.astype(REAL)) if surfTar.offsetMlt[self, len(surfTar.twig)] > 0: K_gpu, V_gpu = M2P_gpu(surfSrc, surfTar, K_gpu, V_gpu, self, ind0, param, LorY, timing, kernel) K_gpu, V_gpu = P2P_gpu(surfSrc, surfTar, X_V, X_Kx, X_Ky, X_Kz, X_Kc, X_Vc, K_gpu, V_gpu, self, LorY, K_diag, IorE, L, w, param, timing, kernel) tic.record() K_aux = cuda.from_device(K_gpu, len(K_aux), dtype=REAL) V_aux = cuda.from_device(V_gpu, len(V_aux), dtype=REAL) toc.record() toc.synchronize() timing.time_trans += tic.time_till(toc) * 1e-3 tic.record() K_lyr = K_aux[surfTar.unsort] V_lyr = V_aux[surfTar.unsort] toc.record() toc.synchronize() timing.time_sort += tic.time_till(toc) * 1e-3 return K_lyr, V_lyr
def project_Kt(XKt, LorY, surfSrc, surfTar, Kt_diag, self, param, ind0, timing, kernel): if param.GPU == 1: tic = cuda.Event() toc = cuda.Event() else: tic = Event() toc = Event() REAL = param.REAL Ns = len(surfSrc.triangle) Nt = len(surfTar.triangle) L = numpy.sqrt(2 * surfSrc.Area) # Representative length tic.record() K = param.K w = getWeights(K) X_Kt = numpy.zeros(Ns * K) X_Ktc = numpy.zeros(Ns * K) NsK = numpy.arange(Ns * K) X_Kt[:] = XKt[NsK / K] * w[NsK % K] * surfSrc.Area[NsK / K] X_Ktc[:] = XKt[NsK / K] toc.record() toc.synchronize() timing.time_mass += tic.time_till(toc) * 1e-3 tic.record() C = 0 X_aux = numpy.zeros(Ns * K) getMultipole(surfSrc.tree, C, surfSrc.xj, surfSrc.yj, surfSrc.zj, X_Kt, X_aux, X_aux, X_aux, ind0, param.P, param.NCRIT) toc.record() toc.synchronize() timing.time_P2M += tic.time_till(toc) * 1e-3 tic.record() for C in reversed(range(1, len(surfSrc.tree))): PC = surfSrc.tree[C].parent upwardSweep(surfSrc.tree, C, PC, param.P, ind0.II, ind0.JJ, ind0.KK, ind0.index, ind0.combII, ind0.combJJ, ind0.combKK, ind0.IImii, ind0.JJmjj, ind0.KKmkk, ind0.index_small, ind0.index_ptr) toc.record() toc.synchronize() timing.time_M2M += tic.time_till(toc) * 1e-3 tic.record() X_Kt = X_Kt[surfSrc.sortSource] X_Ktc = X_Ktc[surfSrc.sortSource] toc.record() toc.synchronize() timing.time_sort += tic.time_till(toc) * 1e-3 param.Nround = len(surfTar.twig) * param.NCRIT Ktx_aux = numpy.zeros(param.Nround) Kty_aux = numpy.zeros(param.Nround) Ktz_aux = numpy.zeros(param.Nround) AI_int = 0 ### CPU code if param.GPU == 0: if surfTar.offsetMlt[self, len(surfTar.twig)] > 0: Ktx_aux, Kty_aux, Ktz_aux = M2PKt_sort(surfSrc, surfTar, Ktx_aux, Kty_aux, Ktz_aux, self, ind0.index_large, param, LorY, timing) Ktx_aux, Kty_aux, Ktz_aux = P2PKt_sort(surfSrc, surfTar, X_Kt, X_Ktc, Ktx_aux, Kty_aux, Ktz_aux, self, LorY, w, param, timing) ### GPU code elif param.GPU == 1: Ktx_gpu = cuda.to_device(Ktx_aux.astype(REAL)) Kty_gpu = cuda.to_device(Kty_aux.astype(REAL)) Ktz_gpu = cuda.to_device(Ktz_aux.astype(REAL)) if surfTar.offsetMlt[self, len(surfTar.twig)] > 0: Ktx_gpu, Kty_gpu, Ktz_gpu = M2PKt_gpu(surfSrc, surfTar, Ktx_gpu, Kty_gpu, Ktz_gpu, self, ind0, param, LorY, timing, kernel) Ktx_gpu, Kty_gpu, Ktz_gpu = P2PKt_gpu(surfSrc, surfTar, X_Kt, X_Ktc, Ktx_gpu, Kty_gpu, Ktz_gpu, self, LorY, w, param, timing, kernel) tic.record() Ktx_aux = cuda.from_device(Ktx_gpu, len(Ktx_aux), dtype=REAL) Kty_aux = cuda.from_device(Kty_gpu, len(Kty_aux), dtype=REAL) Ktz_aux = cuda.from_device(Ktz_gpu, len(Ktz_aux), dtype=REAL) toc.record() toc.synchronize() timing.time_trans += tic.time_till(toc) * 1e-3 tic.record() Kt_lyr = Ktx_aux[surfTar.unsort]*surfTar.normal[:,0] \ + Kty_aux[surfTar.unsort]*surfTar.normal[:,1] \ + Ktz_aux[surfTar.unsort]*surfTar.normal[:,2] if abs(Kt_diag) > 1e-12: # if same surface Kt_lyr += Kt_diag * XKt toc.record() toc.synchronize() timing.time_sort += tic.time_till(toc) * 1e-3 return Kt_lyr
def test_run(self): self.world.stack = [Event(time) for time in range(10, 41, 10)] self.world.run()
def project(XK, XV, LorY, surfSrc, surfTar, K_diag, V_diag, IorE, self, param, ind0, timing, kernel): if param.GPU==1: tic = cuda.Event() toc = cuda.Event() else: tic = Event() toc = Event() REAL = param.REAL Ns = len(surfSrc.triangle) Nt = len(surfTar.triangle) L = numpy.sqrt(2*surfSrc.Area) # Representative length tic.record() K = param.K w = getWeights(K) X_V = numpy.zeros(Ns*K) X_Kx = numpy.zeros(Ns*K) X_Ky = numpy.zeros(Ns*K) X_Kz = numpy.zeros(Ns*K) X_Kc = numpy.zeros(Ns*K) X_Vc = numpy.zeros(Ns*K) NsK = numpy.arange(Ns*K) X_V[:] = XV[NsK/K]*w[NsK%K]*surfSrc.Area[NsK/K] X_Kx[:] = XK[NsK/K]*w[NsK%K]*surfSrc.Area[NsK/K]*surfSrc.normal[NsK/K,0] X_Ky[:] = XK[NsK/K]*w[NsK%K]*surfSrc.Area[NsK/K]*surfSrc.normal[NsK/K,1] X_Kz[:] = XK[NsK/K]*w[NsK%K]*surfSrc.Area[NsK/K]*surfSrc.normal[NsK/K,2] X_Kc[:] = XK[NsK/K] X_Vc[:] = XV[NsK/K] toc.record() toc.synchronize() timing.time_mass += tic.time_till(toc)*1e-3 tic.record() C = 0 getMultipole(surfSrc.tree, C, surfSrc.xj, surfSrc.yj, surfSrc.zj, X_V, X_Kx, X_Ky, X_Kz, ind0, param.P, param.NCRIT) toc.record() toc.synchronize() timing.time_P2M += tic.time_till(toc)*1e-3 tic.record() for C in reversed(range(1,len(surfSrc.tree))): PC = surfSrc.tree[C].parent upwardSweep(surfSrc.tree, C, PC, param.P, ind0.II, ind0.JJ, ind0.KK, ind0.index, ind0.combII, ind0.combJJ, ind0.combKK, ind0.IImii, ind0.JJmjj, ind0.KKmkk, ind0.index_small, ind0.index_ptr) toc.record() toc.synchronize() timing.time_M2M += tic.time_till(toc)*1e-3 tic.record() X_V = X_V[surfSrc.sortSource] X_Kx = X_Kx[surfSrc.sortSource] X_Ky = X_Ky[surfSrc.sortSource] X_Kz = X_Kz[surfSrc.sortSource] X_Kc = X_Kc[surfSrc.sortSource] X_Vc = X_Vc[surfSrc.sortSource] toc.record() toc.synchronize() timing.time_sort += tic.time_till(toc)*1e-3 param.Nround = len(surfTar.twig)*param.NCRIT K_aux = numpy.zeros(param.Nround) V_aux = numpy.zeros(param.Nround) AI_int = 0 ### CPU code if param.GPU==0: K_aux, V_aux = M2P_sort(surfSrc, surfTar, K_aux, V_aux, self, ind0.index_large, param, LorY, timing) K_aux, V_aux = P2P_sort(surfSrc, surfTar, X_V, X_Kx, X_Ky, X_Kz, X_Kc, X_Vc, K_aux, V_aux, self, LorY, K_diag, V_diag, IorE, L, w, param, timing) ### GPU code elif param.GPU==1: K_gpu = cuda.to_device(K_aux.astype(REAL)) V_gpu = cuda.to_device(V_aux.astype(REAL)) if surfTar.offsetMlt[self,len(surfTar.twig)]>0: K_gpu, V_gpu = M2P_gpu(surfSrc, surfTar, K_gpu, V_gpu, self, ind0, param, LorY, timing, kernel) K_gpu, V_gpu = P2P_gpu(surfSrc, surfTar, X_V, X_Kx, X_Ky, X_Kz, X_Kc, X_Vc, K_gpu, V_gpu, self, LorY, K_diag, IorE, L, w, param, timing, kernel) tic.record() K_aux = cuda.from_device(K_gpu, len(K_aux), dtype=REAL) V_aux = cuda.from_device(V_gpu, len(V_aux), dtype=REAL) toc.record() toc.synchronize() timing.time_trans += tic.time_till(toc)*1e-3 tic.record() K_lyr = K_aux[surfTar.unsort] V_lyr = V_aux[surfTar.unsort] toc.record() toc.synchronize() timing.time_sort += tic.time_till(toc)*1e-3 return K_lyr, V_lyr
def project_Kt(XKt, LorY, surfSrc, surfTar, Kt_diag, self, param, ind0, timing, kernel): if param.GPU==1: tic = cuda.Event() toc = cuda.Event() else: tic = Event() toc = Event() REAL = param.REAL Ns = len(surfSrc.triangle) Nt = len(surfTar.triangle) L = numpy.sqrt(2*surfSrc.Area) # Representative length tic.record() K = param.K w = getWeights(K) X_Kt = numpy.zeros(Ns*K) X_Ktc = numpy.zeros(Ns*K) NsK = numpy.arange(Ns*K) X_Kt[:] = XKt[NsK/K]*w[NsK%K]*surfSrc.Area[NsK/K] X_Ktc[:] = XKt[NsK/K] toc.record() toc.synchronize() timing.time_mass += tic.time_till(toc)*1e-3 tic.record() C = 0 X_aux = numpy.zeros(Ns*K) getMultipole(surfSrc.tree, C, surfSrc.xj, surfSrc.yj, surfSrc.zj, X_Kt, X_aux, X_aux, X_aux, ind0, param.P, param.NCRIT) toc.record() toc.synchronize() timing.time_P2M += tic.time_till(toc)*1e-3 tic.record() for C in reversed(range(1,len(surfSrc.tree))): PC = surfSrc.tree[C].parent upwardSweep(surfSrc.tree, C, PC, param.P, ind0.II, ind0.JJ, ind0.KK, ind0.index, ind0.combII, ind0.combJJ, ind0.combKK, ind0.IImii, ind0.JJmjj, ind0.KKmkk, ind0.index_small, ind0.index_ptr) toc.record() toc.synchronize() timing.time_M2M += tic.time_till(toc)*1e-3 tic.record() X_Kt = X_Kt[surfSrc.sortSource] X_Ktc = X_Ktc[surfSrc.sortSource] toc.record() toc.synchronize() timing.time_sort += tic.time_till(toc)*1e-3 param.Nround = len(surfTar.twig)*param.NCRIT Ktx_aux = numpy.zeros(param.Nround) Kty_aux = numpy.zeros(param.Nround) Ktz_aux = numpy.zeros(param.Nround) AI_int = 0 ### CPU code if param.GPU==0: if surfTar.offsetMlt[self,len(surfTar.twig)]>0: Ktx_aux, Kty_aux, Ktz_aux = M2PKt_sort(surfSrc, surfTar, Ktx_aux, Kty_aux, Ktz_aux, self, ind0.index_large, param, LorY, timing) Ktx_aux, Kty_aux, Ktz_aux = P2PKt_sort(surfSrc, surfTar, X_Kt, X_Ktc, Ktx_aux, Kty_aux, Ktz_aux, self, LorY, w, param, timing) ### GPU code elif param.GPU==1: Ktx_gpu = cuda.to_device(Ktx_aux.astype(REAL)) Kty_gpu = cuda.to_device(Kty_aux.astype(REAL)) Ktz_gpu = cuda.to_device(Ktz_aux.astype(REAL)) if surfTar.offsetMlt[self,len(surfTar.twig)]>0: Ktx_gpu, Kty_gpu, Ktz_gpu = M2PKt_gpu(surfSrc, surfTar, Ktx_gpu, Kty_gpu, Ktz_gpu, self, ind0, param, LorY, timing, kernel) Ktx_gpu, Kty_gpu, Ktz_gpu = P2PKt_gpu(surfSrc, surfTar, X_Kt, X_Ktc, Ktx_gpu, Kty_gpu, Ktz_gpu, self, LorY, w, param, timing, kernel) tic.record() Ktx_aux = cuda.from_device(Ktx_gpu, len(Ktx_aux), dtype=REAL) Kty_aux = cuda.from_device(Kty_gpu, len(Kty_aux), dtype=REAL) Ktz_aux = cuda.from_device(Ktz_gpu, len(Ktz_aux), dtype=REAL) toc.record() toc.synchronize() timing.time_trans += tic.time_till(toc)*1e-3 tic.record() Kt_lyr = Ktx_aux[surfTar.unsort]*surfTar.normal[:,0] \ + Kty_aux[surfTar.unsort]*surfTar.normal[:,1] \ + Ktz_aux[surfTar.unsort]*surfTar.normal[:,2] if abs(Kt_diag)>1e-12: # if same surface Kt_lyr += Kt_diag * XKt toc.record() toc.synchronize() timing.time_sort += tic.time_till(toc)*1e-3 return Kt_lyr
# Read sensor data from Arduino via serial reading = ser.readline() if ser.isButtonPressed(reading): ongoingMeal.forceToggle(buffer.latest()) else: if not buffer.isFull(): buffer.add(reading) continue outlier = buffer.score(reading, useTypical=eventInProgress) > OUTLIER_Z_SCORE if not eventInProgress: buffer.updateTypicalDev() if not eventInProgress and outlier: eventInProgress = True events.append(Event([buffer.earliest()], reading)) elif eventInProgress: if outlier: events[-1].add(reading) else: eventInProgress = False events[-1].end() ongoingMeal.updateWithEvent(events[-1]) buffer.add(reading) if ongoingMeal.checkIfIdle() or ongoingMeal.forceEnd: success = ongoingMeal.endMeal(buffer.latest()) if success == -1: print("Invalid Meal!") else:
def parse_file(folder): print("######################") print("PROCESSING: ") print(folder) print("######################") list_events = [] folder = os.path.join(os.path.dirname(__file__), folder) for filename in os.listdir(folder): print(filename) if "STAKING_FLEX" in filename: filename = os.path.join(folder, filename) with open(filename, "r") as a_file: for line in a_file: if not line.startswith("--"): line_parts = re.split(r'\t+', line) e = Event(trans_type="Staking", buy_amt=line_parts[3], buy_cur=line_parts[1], comment="Binance Flexible Staking", effective_date=parse_date( line_parts[0], '%Y-%m-%d %H:%M:%S'), exchange="Binance") list_events.append(e) if "STAKING_LOCKED" in filename: filename = os.path.join(folder, filename) with open(filename, "r") as a_file: for line in a_file: if not line.startswith("--"): try: line_parts = re.split(r'\t+', line) e = Event(trans_type="Staking", buy_amt=line_parts[3], buy_cur=line_parts[0], comment="Binance Locked Staking", effective_date=parse_date( line_parts[4], '%Y-%m-%d'), exchange="Binance") list_events.append(e) except: print("ERROR:") print(line) if "Buy History" in filename: filename = os.path.join(folder, filename) with open(filename, "r") as a_file: df = pd.read_excel(filename, sheet_name="sheet1") df = df[df["Status"] == "Completed"] for index, row in df.iterrows(): e = Event(trans_type="Trade", buy_amt=row["Final Amount"].split(" ")[0], buy_cur=row["Final Amount"].split(" ")[1], sell_amt=row["Amount"].split(" ")[0], sell_cur=row["Amount"].split(" ")[1], fee_amt=row["Fees"].split(" ")[0], fee_cur=row["Fees"].split(" ")[1], comment="Binance Buy", effective_date=parse_date( row["Date(UTC)"], '%Y-%m-%d %H:%M:%S'), exchange="Binance") list_events.append(e) if "DEPOSIT_HISTORY_FIAT" in filename: filename = os.path.join(folder, filename) with open(filename, "r") as a_file: df = pd.read_excel(filename, sheet_name="sheet1") df = df[df["Status"] == "Succesfull"] for index, row in df.iterrows(): e = Event(trans_type="Deposit", buy_amt=row["Amount"], buy_cur=row["Coin"], fee_amt=row["Fee"], fee_cur=row["Coin"], comment="Binance Deposit Fiat", effective_date=parse_date( row["Date(UTC)"], '%Y-%m-%d %H:%M:%S'), exchange="Binance") list_events.append(e) if "DEPOSIT_HISTORY_CRYPTO" in filename: filename = os.path.join(folder, filename) with open(filename, "r") as a_file: df = pd.read_excel(filename, sheet_name="sheet1") df = df[df["Status"] == "Completed"] for index, row in df.iterrows(): e = Event(trans_type="Deposit", buy_amt=row["Amount"], buy_cur=row["Coin"], comment="Binance Deposit Fiat", effective_date=parse_date( row["Date(UTC)"], '%Y-%m-%d %H:%M:%S'), exchange="Binance") list_events.append(e) if "part" in filename: filename = os.path.join(folder, filename) with open(filename, "r") as a_file: df = pd.read_csv(filename) for index, row in df.iterrows(): row["BuyCoin"] = row["Executed"] row["PayCoin"] = row["Amount"] row["FeeCoin"] = row["Fee"] row["Executed"] = row["Executed"][0:len(row["Executed"]) - 3] row["Amount"] = row["Amount"][0:len(row["Amount"]) - 3] row["Fee"] = row["Fee"][0:len(row["Fee"]) - 3] row["BuyCoin"] = row["BuyCoin"].replace( row["Executed"], "") row["PayCoin"] = row["PayCoin"].replace(row["Amount"], "") row["FeeCoin"] = row["FeeCoin"].replace(row["Fee"], "") e = Event(trans_type="Trade", buy_amt=row["Executed"], buy_cur=row["BuyCoin"], fee_amt=row["Fee"], fee_cur=row["FeeCoin"], sell_amt=row["Amount"], sell_cur=row["PayCoin"], comment="Binance Buy History", effective_date=parse_date( row["Date(UTC)"], '%Y-%m-%d %H:%M:%S'), exchange="Binance") list_events.append(e) if "CONVERSIONS_BNB" in filename: filename = os.path.join(folder, filename) with open(filename, "r") as a_file: df = pd.read_csv(filename) for index, row in df.iterrows(): e = Event(trans_type="Trade", buy_amt=row["Converted BNB"], buy_cur="BNB", fee_amt="BNB", fee_cur=row["Fee (BNB)"], sell_amt=row["Amount"], sell_cur=row["Coin"], comment="Binance BNB Conversion low capitals", effective_date=parse_date( row["Date"], '%Y-%m-%d %H:%M:%S'), exchange="Binance") list_events.append(e) if "AIRDROPS" in filename: filename = os.path.join(folder, filename) with open(filename, "r") as a_file: df = pd.read_csv(filename) for index, row in df.iterrows(): e = Event(trans_type="Airdrop", buy_amt=row["Amount"], buy_cur=row["Coin"], comment="Binance Airdrop " + row["Note"], effective_date=parse_date( row["Time"], '%Y-%m-%d %H:%M:%S'), exchange="Binance") list_events.append(e) return list_events