def plates(): # print("Started training classifiers on plates data set.") x_train, x_test, y_train, y_test = data_processing.plates() # LR # lr_best_model, lr_params = classification_cv.logistic_regression(x_train, y_train, C_min=0.01, C_max=10, fold=3, # iterations=20) # evaluate_classifier(x_train, x_test, y_train, y_test, lr_best_model, lr_params, "Plates", # "Logistic Regression") # DECISION TREE # dt_best_model, dt_params = classification_cv.decision_trees(x_train, y_train, max_depth=10, fold=3, iterations=20) # evaluate_classifier(x_train, x_test, y_train, y_test, dt_best_model, dt_params, "Plates", # "DECISION TREE") # RANDOM FOREST # rf_best_model, rf_params = classification_cv.random_forest(x_train, y_train, max_estimator=20, fold=4, # iterations=20) # evaluate_classifier(x_train, x_test, y_train, y_test, rf_best_model, rf_params, # "Plates", "RANDOM FOREST") # SVC # svc_best_model, svc_params = classification_cv.SVC(x_train, y_train, # ['linear','poly', 'rbf', 'sigmoid'], # 0.01, 100, 1, 1000, fold=2, # iterations=20) # evaluate_classifier(x_train, x_test, y_train, y_test, svc_best_model, svc_params, "Plates", "SVC") # KNN # knn_best_model, knn_params = classification_cv.KNC(x_train, y_train, neighbors=10, fold=4, iterations=20) # evaluate_classifier(x_train, x_test, y_train, y_test, knn_best_model, knn_params, "Plates", "KNN") # GaussianNB # nb_best_model, nb_params = classification_cv.GaussianNB(x_train, y_train, fold=4, iterations=20) # evaluate_classifier(x_train, x_test, y_train, y_test, nb_best_model, nb_params, "Plates", # "Gaussian NB") # Ada boost classifier # AB_best_model, AB_params = classification_cv.ada_boost_classifier(x_train, y_train, no_estimators=100,fold = 4, # iterations=20) # evaluate_classifier(x_train, x_test, y_train, y_test, AB_best_model, AB_params, # "Plates", "ADA BOOST") # MLP mlp_best_model, mlp_params = classification_cv.MLPClassifier( x_train, y_train, hidden_layer_sizes=[(7, ), ( 100, 7, )], alphas=[0.01, 0.05, 0.5, 1], max_iter=[100], fold=4, iterations=20) evaluate_classifier(x_train, x_test, y_train, y_test, mlp_best_model, mlp_params, "Plates", "MLP")
def torax(): print("Started training classifiers on torax data set.") x_train, x_test, y_train, y_test = data_processing.torax() result = {} # LR lr_best_model, lr_params = classification_cv.logistic_regression( x_train, y_train, C_min=0.01, C_max=10, fold=3, iterations=20) result[constant.LR] = evaluate_classifier(x_train, x_test, y_train, y_test, lr_best_model, lr_params, "torax", "Logistic Regression") # DECISION TREE dt_best_model, dt_params = classification_cv.decision_trees(x_train, y_train, max_depth=10, fold=3, iterations=20) result[constant.DECISION_TREE] = evaluate_classifier( x_train, x_test, y_train, y_test, dt_best_model, dt_params, "torax", "DECISION TREE") # RANDOM FOREST rf_best_model, rf_params = classification_cv.random_forest( x_train, y_train, max_estimator=20, fold=4, iterations=20) result[constant.RANDOM_FOREST] = evaluate_classifier( x_train, x_test, y_train, y_test, rf_best_model, rf_params, "torax", "RANDOM FOREST") # SVC # svc_best_model, svc_params = classification_cv.SVC(x_train, y_train, # ['linear','poly', 'rbf', 'sigmoid'], # 0.01, 100, 1, 1000, fold=2, # iterations=20) # evaluate_classifier(x_train, x_test, y_train, y_test, svc_best_model, svc_params, "torax", "SVC") # KNN knn_best_model, knn_params = classification_cv.KNC(x_train, y_train, neighbors=10, fold=4, iterations=20) result[constant.KNC] = evaluate_classifier(x_train, x_test, y_train, y_test, knn_best_model, knn_params, "torax", "KNN") # GaussianNB nb_best_model, nb_params = classification_cv.GaussianNB(x_train, y_train, fold=4, iterations=20) result[constant.GNB] = evaluate_classifier(x_train, x_test, y_train, y_test, nb_best_model, nb_params, "torax", "Gaussian NB") # Ada boost classifier AB_best_model, AB_params = classification_cv.ada_boost_classifier( x_train, y_train, no_estimators=100, fold=4, iterations=20) result[constant.ADABOOST] = evaluate_classifier(x_train, x_test, y_train, y_test, AB_best_model, AB_params, "torax", "ADA BOOST") # MLP mlp_best_model, mlp_params = classification_cv.MLPClassifier( x_train, y_train, hidden_layer_sizes=[(10, ), ( 100, 10, )], alphas=[0.01, 0.05, 0.5, 1], max_iter=[10, 20, 50, 100], fold=4, iterations=20) result[constant.NN] = evaluate_classifier(x_train, x_test, y_train, y_test, mlp_best_model, mlp_params, "torax", "MLP") export_result(result, "result/classification/torax.json")
def default_credit_card(): print( "Started training classifiers on default credit card clients data set." ) x_train, x_test, y_train, y_test = data_processing.credit_card_client() result = {} # LR lr_best_model, lr_params = classification_cv.logistic_regression( x_train, y_train, C_min=0.01, C_max=10, fold=3, iterations=20) result[constant.LR] = evaluate_classifier(x_train, x_test, y_train, y_test, lr_best_model, lr_params, "Default credit card", "Logistic Regression") # DECISION TREE dt_best_model, dt_params = classification_cv.decision_trees(x_train, y_train, max_depth=10, fold=3, iterations=20) result[constant.DECISION_TREE] = evaluate_classifier( x_train, x_test, y_train, y_test, dt_best_model, dt_params, "Default credit card", "DECISION TREE") # RANDOM FOREST rf_best_model, rf_params = classification_cv.random_forest( x_train, y_train, max_estimator=20, fold=4, iterations=20) result[constant.RANDOM_FOREST] = evaluate_classifier( x_train, x_test, y_train, y_test, rf_best_model, rf_params, "Default credit card", "RANDOM FOREST") # AdaBoost rf_best_model, rf_params = classification_cv.ada_boost_classifier( x_train, y_train, no_estimators=50, fold=4, iterations=20) result[constant.ADABOOST] = evaluate_classifier(x_train, x_test, y_train, y_test, rf_best_model, rf_params, "Default credit card", "AdaBoost") # SVC svc_best_model, svc_params = classification_cv.SVC(x_train, y_train, ['linear'], C_min=0.01, C_max=1, gamma_min=1, gamma_max=100, fold=3, iterations=10) result[constant.SVC] = evaluate_classifier(x_train, x_test, y_train, y_test, svc_best_model, svc_params, "Default credit card", "SVC") # KNN knn_best_model, knn_params = classification_cv.KNC(x_train, y_train, neighbors=10, fold=3, iterations=20) result[constant.KNC] = evaluate_classifier(x_train, x_test, y_train, y_test, knn_best_model, knn_params, "Default credit card", "KNN") # GaussianNB nb_best_model, nb_params = classification_cv.GaussianNB(x_train, y_train, fold=4, iterations=20) result[constant.GNB] = evaluate_classifier(x_train, x_test, y_train, y_test, nb_best_model, nb_params, "Default credit card", "Gaussian NB") # MLP mlp_best_model, mlp_params = classification_cv.MLPClassifier( x_train, y_train, hidden_layer_sizes=[(), (10, )], alphas=[0.01, 0.05, 0.5, 1], max_iter=[100, 1000, 10000, 100000], fold=4, iterations=20) result[constant.NN] = evaluate_classifier(x_train, x_test, y_train, y_test, mlp_best_model, mlp_params, "Default credit card", "MLP") export_result(result, "result/classification/default_credit_card.json")