def main(): # Instantiate the console arguments function args = arg_parser() print("GPU setting: {}".format(args.gpu)) # Define normalization for transforms normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], ) # Define transformations for training, validation and test sets data_transforms = create_transforms(30, 224, 256, normalize) # Load the datasets from the image folders datasets = image_datasets(data_transforms) # Define the dataloaders using the image datasets loaders = data_loaders(datasets, 32) # Instantiate a new model model = create_model(arch=args.arch) output_units = len(datasets['training'].classes) # Create new classifier model.classifier = create_classifier(model, args.hidden_layers, output_units, args.dropout) device = check_gpu(args.gpu) print(device) model.to(device) learning_rate = args.learning_rate criterion = nn.NLLLoss() optimizer = optim.Adam(model.classifier.parameters(), lr=learning_rate) epochs = args.epochs print_every = args.print_every steps = 0 trainloader = loaders['training'] validloader = loaders['validation'] # trained_model = train(model, epochs, learning_rate, criterion, optimizer, loaders['training'], loaders['validation'], device) trained_model = train(model, trainloader, validloader, device, criterion, optimizer, epochs, print_every, steps) print("Training has completed") test_model(trained_model, loaders['testing'], device) initial_checkpoint(trained_model, args.checkpoint_dir, datasets['training'])
import classifier model = classifier.create_model() print(classifier.benchmark_model(model, repeats=10))
if __name__ == "__main__": print("###########################################################") print("Starting the ML Ranking based on staged logistic regression") print("-----------------------------------------------------------") time.sleep(1) args = load_args() queries = args.queries if args.queries is not None else [] dataset_path = args.dataset path_load = args.model if path_load == "": model, logor = create_model(dataset_path) print("Model created...") # Ask the user to save the model isSaved = input("Do you want to save the model? ") if isSaved == "y": saveModel(model, logor) else: print("Why donĀ“t you like the model= :(") else: model, logor = loadModel(path_load) print("Model loaded...") time.sleep(1) if len(queries) > 0: print("-------------------------------------------------------") print("Starting the predictions...") print("-------------------------------------------------------")
import cv2 from os.path import join from keras.models import load_model from skimage import io from skimage.transform import resize from skimage import draw from classifier import create_model import numpy as np from edge_finder import calc_bounds PREVIEW = "preview" OUTPUT_FOLDER = 'data/yellow_potato' print("loading model....") model = create_model() model.load_weights('second_try_2.h5') def main(): print("preparing opencv...") cv2.namedWindow(PREVIEW) vc = cv2.VideoCapture(0) i = 0 if vc.isOpened(): has_frame, frame = vc.read() else: has_frame = False print("loop")
def train_single(args): """ training program. """ bert_config = BertConfig(args.bert_config_path) bert_config.print_config() if args.use_cuda: place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0'))) dev_count = fluid.core.get_cuda_device_count() else: place = fluid.CPUPlace() dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) exe = fluid.Executor(place) task_name = args.task_name.lower() processors = { 'sem': reader.SemevalTask9Processor, } processor = processors[task_name](data_dir=args.data_dir, vocab_path=args.vocab_path, max_seq_len=args.max_seq_len, do_lower_case=args.do_lower_case, in_tokens=args.in_tokens, random_seed=args.random_seed) num_labels = len(processor.get_labels()) if not (args.do_train or args.do_val or args.do_test): raise ValueError("For args `do_train`, `do_val` and `do_test`, at " "least one of them must be True.") startup_prog = fluid.Program() if args.random_seed is not None: startup_prog.random_seed = args.random_seed if args.do_train: train_data_generator = processor.data_generator( batch_size=args.batch_size, phase='train', epoch=args.epoch, dev_count=dev_count, shuffle=True, drop_keyword=args.drop_keyword) num_train_examples = processor.get_num_examples(phase='train') if args.in_tokens: max_train_steps = args.epoch * num_train_examples // ( args.batch_size // args.max_seq_len) // dev_count else: max_train_steps = args.epoch * num_train_examples // args.batch_size // dev_count warmup_steps = int(max_train_steps * args.warmup_proportion) print("Device count: %d" % dev_count) print("Num train examples: %d" % num_train_examples) print("Max train steps: %d" % max_train_steps) print("Num warmup steps: %d" % warmup_steps) train_program = fluid.Program() with fluid.program_guard(train_program, startup_prog): with fluid.unique_name.guard(): train_pyreader, loss, probs, accuracy, labels, num_seqs = create_model( args, pyreader_name='train_reader', bert_config=bert_config, num_labels=num_labels) scheduled_lr = optimization(loss=loss, warmup_steps=warmup_steps, num_train_steps=max_train_steps, learning_rate=args.learning_rate, train_program=train_program, startup_prog=startup_prog, weight_decay=args.weight_decay, scheduler=args.lr_scheduler, use_fp16=args.use_fp16, loss_scaling=args.loss_scaling) if args.verbose: if args.in_tokens: lower_mem, upper_mem, unit = fluid.contrib.memory_usage( program=train_program, batch_size=args.batch_size // args.max_seq_len) else: lower_mem, upper_mem, unit = fluid.contrib.memory_usage( program=train_program, batch_size=args.batch_size) print("Theoretical memory usage in training: %.3f - %.3f %s" % (lower_mem, upper_mem, unit)) if args.do_val or args.do_test: test_prog = fluid.Program() with fluid.program_guard(test_prog, startup_prog): with fluid.unique_name.guard(): test_pyreader, loss, probs, accuracy, labels, num_seqs = create_model( args, pyreader_name='test_reader', bert_config=bert_config, num_labels=num_labels) test_prog = test_prog.clone(for_test=True) exe.run(startup_prog) if args.do_train: if args.init_checkpoint and args.init_pretraining_params: print( "WARNING: args 'init_checkpoint' and 'init_pretraining_params' " "both are set! Only arg 'init_checkpoint' is made valid.") if args.init_checkpoint: init_checkpoint(exe, args.init_checkpoint, main_program=startup_prog, use_fp16=args.use_fp16) elif args.init_pretraining_params: init_pretraining_params(exe, args.init_pretraining_params, main_program=startup_prog, use_fp16=args.use_fp16) elif args.do_val or args.do_test: if not args.init_checkpoint: raise ValueError("args 'init_checkpoint' should be set if" "only doing validation or testing!") init_checkpoint(exe, args.init_checkpoint, main_program=startup_prog, use_fp16=args.use_fp16) if args.do_train: exec_strategy = fluid.ExecutionStrategy() exec_strategy.use_experimental_executor = args.use_fast_executor exec_strategy.num_threads = dev_count exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope train_exe = fluid.ParallelExecutor(use_cuda=args.use_cuda, loss_name=loss.name, exec_strategy=exec_strategy, main_program=train_program) train_pyreader.decorate_tensor_provider(train_data_generator) else: train_exe = None if args.do_val or args.do_test: test_exe = fluid.ParallelExecutor(use_cuda=args.use_cuda, main_program=test_prog, share_vars_from=train_exe) if args.do_train: train_pyreader.start() steps = 0 total_cost, total_acc, total_num_seqs = [], [], [] time_begin = time.time() while True: try: steps += 1 if steps % args.skip_steps == 0: if warmup_steps <= 0: fetch_list = [loss.name, accuracy.name, num_seqs.name] else: fetch_list = [ loss.name, accuracy.name, scheduled_lr.name, num_seqs.name ] else: fetch_list = [] outputs = train_exe.run(fetch_list=fetch_list) if steps % args.skip_steps == 0: if warmup_steps <= 0: np_loss, np_acc, np_num_seqs = outputs else: np_loss, np_acc, np_lr, np_num_seqs = outputs total_cost.extend(np_loss * np_num_seqs) total_acc.extend(np_acc * np_num_seqs) total_num_seqs.extend(np_num_seqs) if args.verbose: verbose = "train pyreader queue size: %d, " % train_pyreader.queue.size( ) verbose += "learning rate: %f" % (np_lr[0] if warmup_steps > 0 else args.learning_rate) print(verbose) current_example, current_epoch = processor.get_train_progress( ) time_end = time.time() used_time = time_end - time_begin print( "epoch: %d, progress: %d/%d, step: %d, ave loss: %f, " "ave acc: %f, speed: %f steps/s" % (current_epoch, current_example, num_train_examples, steps, np.sum(total_cost) / np.sum(total_num_seqs), np.sum(total_acc) / np.sum(total_num_seqs), args.skip_steps / used_time)) total_cost, total_acc, total_num_seqs = [], [], [] time_begin = time.time() if steps % args.save_steps == 0: save_path = os.path.join(args.checkpoints, "step_" + str(steps)) fluid.io.save_persistables(exe, save_path, train_program) if steps % args.validation_steps == 0: # evaluate dev set if args.do_val: test_pyreader.decorate_tensor_provider( processor.data_generator( batch_size=args.batch_size, phase='dev', epoch=1, dev_count=1, shuffle=False)) evaluate(exe, test_prog, test_pyreader, [ loss.name, accuracy.name, probs.name, labels.name, num_seqs.name ], "dev") # evaluate test set if args.do_test: test_pyreader.decorate_tensor_provider( processor.data_generator( batch_size=args.batch_size, phase='test', epoch=1, dev_count=1, shuffle=False)) evaluate(exe, test_prog, test_pyreader, [ loss.name, accuracy.name, probs.name, labels.name, num_seqs.name ], "test") except fluid.core.EOFException: save_path = os.path.join(args.checkpoints, "step_" + str(steps)) fluid.io.save_persistables(exe, save_path, train_program) train_pyreader.reset() break # final eval on dev set if args.do_val: test_pyreader.decorate_tensor_provider( processor.data_generator(batch_size=args.batch_size, phase='dev', epoch=1, dev_count=1, shuffle=False)) print("Final validation result:") evaluate( exe, test_prog, test_pyreader, [loss.name, accuracy.name, probs.name, labels.name, num_seqs.name], "dev") # final eval on test set if args.do_test: test_pyreader.decorate_tensor_provider( processor.data_generator(batch_size=args.batch_size, phase='test', epoch=1, dev_count=1, shuffle=False)) print("Final test result:") predict(exe, test_prog, test_pyreader, [probs.name, num_seqs.name], "test", args.checkpoints + '/prob.txt')