def test_classify_test_dataset(): """ This will attempt to classify the test dataset """ start_time = time.time() classifier.train() number_of_reviews = classifier.negative_review_count + classifier.positive_review_count results = classifier.predict_reviews() print(results) print( str(results["correct_predictions"] / number_of_reviews * 100) + "% is the accuracy ") final_time = time.time() - start_time print("It took: " f'{final_time:.2f}' " seconds to run\n")
def test_classify_train_dataset_with_testing_data_with_stopwords(): """ This will attempt to classify the training dataset, using the testing dataset to train - with stop-words """ start_time = time.time() classifier.train(use_testing_data=True) number_of_reviews = classifier.negative_review_count + classifier.positive_review_count results = classifier.predict_reviews(use_stop_words=True, classify_training_data=True) print(results) print( str(results["correct_predictions"] / number_of_reviews * 100) + "% is the accuracy ") final_time = time.time() - start_time print("It took: " f'{final_time:.2f}' " seconds to run\n")