def __init__(self, max_depth=defaults_parameters["max_depth"], n_estimators=defaults_parameters["n_estimators"], learning_rate=defaults_parameters["learning_rate"]): ClassifierTask.__init__(self) self.max_depth = max_depth self.n_estimators = n_estimators self.learning_rate = learning_rate
def __init__(self, kernel=defaults_parameters["kernel"], C=defaults_parameters["C"], degree=defaults_parameters["degree"], gamma=defaults_parameters["gamma"]): ClassifierTask.__init__(self) self.__kernel__ = kernel self.__C__ = C self.__degree__ = degree self.__gamma__ = gamma
def __init__(self, penalty=defaults_parameters["penalty"], dual=defaults_parameters["dual"], C=defaults_parameters["C"], fit_intercept=defaults_parameters["fit_intercept"]): ClassifierTask.__init__(self) self.__penalty__ = penalty self.__dual__ = dual self.__C__ = C self.__fit_intercept__ = fit_intercept
def __init__(self, criterion=defaults_parameters["criterion"], max_depth=defaults_parameters["max_depth"], min_samples_split=defaults_parameters["min_samples_split"], min_samples_leaf=defaults_parameters["min_samples_leaf"]): ClassifierTask.__init__(self) self.__criterion__ = criterion self.__max_depth__ = max_depth self.__min_samples_split__ = min_samples_split self.__min_samples_leaf__ = min_samples_leaf
def __init__(self, n_neighbors=defaults_parameters["n_neighbors"], algorithm=defaults_parameters["algorithm"], weights=defaults_parameters["weights"], leaf_size=defaults_parameters["leaf_size"], metric=defaults_parameters["metric"]): ClassifierTask.__init__(self) self.__n_neighbors__ = n_neighbors self.__algorithm__ = algorithm self.__weights__ = weights self.__leaf_size__ = leaf_size self.__metric__ = metric
def __init__(self, n_estimators=defaults_parameters["n_estimators"], criterion=defaults_parameters["criterion"], max_depth=defaults_parameters["max_depth"], min_samples_split=defaults_parameters["min_samples_split"], min_samples_leaf=defaults_parameters["min_samples_leaf"]): ClassifierTask.__init__(self) self.n_estimators = n_estimators self.criterion = criterion self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.max_depth = max_depth
def __init__(self): ClassifierTask.__init__(self) self.__base_estimator__ = None
def __init__(self): ClassifierTask.__init__(self)
def __init__(self, base_estimator=defaults_parameters["base_estimator"], n_estimators=defaults_parameters["n_estimators"]): ClassifierTask.__init__(self) self.__base_estimator__ = base_estimator self.__n_estimators__ = n_estimators