Example #1
0
def DrawRBFContour(centers, w_lin, data, xmin, xmax, ymin, ymax):
    start_time = time.time()

    xlist = np.linspace(xmin, xmax, 250)
    ylist = np.linspace(ymin, ymax, 250)
    X, Y = np.meshgrid(xlist, ylist)
    Z = []
    for x_row, y_row in zip(X, Y):
        z_row = zip(x_row, y_row)
        Z.append(z_row)

    new_Z = []

    k = len(centers)
    r = 2 / (np.sqrt(k))
    for z_row in Z:
        row = [
            RBF_Classify(w_lin, centers, test_point, r) for test_point in z_row
        ]
        new_Z.append(row)

    #plt.figure()
    cp = plt.contourf(X, Y, new_Z)
    plt.colorbar(cp)
    plt.title('RBF Plot')
    plt.xlabel('X1')
    plt.ylabel('X2')
    cls.draw_data(data)
    print("--- %s seconds ---" % (time.time() - start_time))
    plt.show()
def DrawNNContour(k, data, trans, xmin, xmax, ymin, ymax, use_sort):
    start_time = time.time()
    
    xlist = np.linspace(xmin, xmax, 250)
    ylist = np.linspace(ymin, ymax, 250)
    X, Y = np.meshgrid(xlist, ylist)
    Z=[]
    for x_row, y_row in zip(X,Y):
        z_row=zip(x_row,y_row)
        Z.append(z_row)    
    
    new_Z=[]
    if trans:
        trans_data = [(Transform(x),y) for x,y in data]
        for z_row in Z:
            row=[KNearestNeighbor(k, trans_data, Transform(test_point), use_sort) for test_point in z_row]
            new_Z.append(row)
    else:
        for z_row in Z:
            row=[KNearestNeighbor(k, data, test_point, use_sort) for test_point in z_row]
            new_Z.append(row)    
            
    #plt.figure()
    cp = plt.contourf(X, Y, new_Z)
    plt.colorbar(cp)
    plt.title('NN Plot')
    plt.xlabel('X1')
    plt.ylabel('X2')
    cls.draw_data(data)
    print("--- %s seconds ---" % (time.time() - start_time))   
    plt.show()    
Example #3
0
def DrawGGContour(data, xmin, xmax, ymin, ymax):
    
    xlist = np.linspace(xmin, xmax, 100)
    ylist = xlist**3
    plt.plot(xlist, ylist, "g-")
    x_1 = [0, 0.00001]
    y_1 = [ymin, ymax]
    plt.xlim(-1.2, 1.2)
    plt.ylim(-1.2, 1.2)
    plt.plot(x_1, y_1, "b-")
    cls.draw_data(data)
    plt.show()
Example #4
0
def DrawLinearContour(data, xmin, xmax, ymin, ymax):
    start_time = time.time()
            
    xlist = np.linspace(xmin, xmax, 250)
    ylist = np.linspace(ymin, ymax, 250)
    X, Y = np.meshgrid(xlist, ylist)
    Z=np.sign(X+2*Y+2.23)

    #plt.figure()
    cp = plt.contourf(X, Y, Z)
    plt.colorbar(cp)
    plt.title('NeuralNet Plot')
    plt.xlabel('X1')
    plt.ylabel('X2')
    cls.draw_data(data)
    print("--- %s seconds ---" % (time.time() - start_time))   
    plt.show()
Example #5
0
def DrawLegendreContour(order, g, train_data, test_data):
    ##Draw contour==============================
    print "Drawing Contour..."
    x1_list = np.arange(-1.2, 1.2, 0.01)
    x2_list = np.arange(-1.2, 1.2, 0.01)
    X1, X2 = np.meshgrid(x1_list, x2_list)

    Z = []
    transformed = [LegendreTransform(order, x1, x2) for x1, x2 in zip(X1, X2)]
    for x in transformed:
        weighted = sum([coef * feature for coef, feature in zip(g, x)])
        Z.append(weighted)
    ##=============================================
    cls.draw_data(train_data)
    plt.contour(X1, X2, Z, [0])
    plt.axis([-1.1, 1.1, -1.1, 1.1])
    plt.show()

    cls.draw_data(test_data)
    plt.contour(X1, X2, Z, [0])
    plt.axis([-1.1, 1.1, -1.1, 1.1])
    plt.show()
Example #6
0
    max_iteration = 10000
    accuracy_threshold = 0.999
    ##================================================

    ## Data preprocessing=====================================
    training_data = extractDigits("ZipDigits.train")
    test_data = extractDigits("ZipDigits.test")

    raw_train_labeled_data = labelImageData(training_data, d1, d2,
                                            features.horiAsymmetry,
                                            features.vertAsymmetry)
    raw_test_labeled_data = labelImageData(test_data, d1, d2,
                                           features.horiAsymmetry,
                                           features.vertAsymmetry)

    if see_train: cls.draw_data(raw_train_labeled_data)
    else: cls.draw_data(raw_test_labeled_data)

    if not tran:
        trans_train_data = raw_train_labeled_data
        trans_test_data = raw_test_labeled_data
    else:
        trans_train_data = thirdOrderTransfrom(raw_train_labeled_data)
        trans_test_data = thirdOrderTransfrom(raw_test_labeled_data)

    ##===========================================================

    ##Learning=========================================================
    g = regressionAndPocket(trans_train_data, accuracy_threshold,
                            max_iteration)
    ##===========================================================