Example #1
0
 def test_classify_2016(self):
     model = train('./corpus/training/', 2)
     classification = classify(model, './corpus/test/2016/19.txt')
     expected_classification = {
         'log p(y=2016|x)': -3800.4027665365134,
         'log p(y=2020|x)': -3805.776535552692,
         'predicted y': '2016'
     }
     self.compare_dicts(classification, expected_classification)
Example #2
0
 def test_classify_2020(self):
     model = train('./corpus/training/', 2)
     classification = classify(model, './corpus/test/2016/0.txt')
     expected_classification = {
         'log p(y=2020|x)': -3906.351945884105,
         'log p(y=2016|x)': -3916.458747858926,
         'predicted y': '2020'
     }
     self.compare_dicts(classification, expected_classification)
Example #3
0
 def test_train(self):
     model = train('./EasyFiles/', 2)
     expected_model = {
         'vocabulary': ['.', 'a'],
         'log prior': {
             '2020': -0.916290731874155,
             '2016': -0.5108256237659905
         },
         'log p(w|y=2020)': {
             '.': -1.6094379124341005,
             'a': -2.302585092994046,
             None: -0.35667494393873267
         },
         'log p(w|y=2016)': {
             '.': -1.7047480922384253,
             'a': -1.2992829841302609,
             None: -0.6061358035703157
         }
     }
     self.compare_dicts(model, expected_model)
Example #4
0
 def train_with_feature_set(self, feature_set, pred_blobs, real_blobs, feat_weight=False):
     X, Y = classify.create_training_set_from_feature_set(feature_set, pred_blobs, real_blobs)
     return classify.train(X, Y, self.clf, self.scaler, self.selector, feat_weight)
Example #5
0
import serialread
import preprocessing
import feature
import classify
import sys
import socket
import numpy as np
import time
import bluetooth
from scipy import signal

trained = classify.train()

bt_address = "20:16:08:04:80:97"  # MAC address of our emotion recognition hardware.
bt_port = 1
bt = bluetooth.BluetoothSocket(bluetooth.RFCOMM)

print("Establishing Bluetooth connection...")
bt.connect((bt_address, bt_port))

print("Bluetooth connection established.")
print("Calibrating for your relaxed state. Please wait...")
time.sleep(5)

std_features_r = [0]

# Extract features for 50 seconds when user is relaxed and uses the means and
# standard deviations of the extracted, relaxed state features for normalization later on.
while 0 in std_features_r:
    features_r = []