def callback(self, image_msg): cv_image = self._cv_bridge.imgmsg_to_cv2(image_msg, "bgr8") # copy from # classify_image.py image_data = cv2.imencode('.jpg', cv_image)[1].tostring() # Creates graph from saved GraphDef. softmax_tensor = self._session.graph.get_tensor_by_name('softmax:0') predictions = self._session.run(softmax_tensor, {'DecodeJpeg/contents:0': image_data}) predictions = np.squeeze(predictions) # Creates node ID --> English string lookup. node_lookup = classify_image.NodeLookup() top_k = predictions.argsort()[-self.use_top_k:][::-1] for node_id in top_k: human_string = node_lookup.id_to_string(node_id) score = predictions[node_id] if score > self.score_threshold: rospy.loginfo('%s (score = %.5f)' % (human_string, score)) self._pub.publish(human_string) def main(self): rospy.spin() if __name__ == '__main__': classify_image.setup_args() rospy.init_node('rostensorflow') tensor = RosTensorFlow() tensor.main()
self.use_top_k = rospy.get_param('~use_top_k', 5) def callback(self, image_msg): cv_image = self._cv_bridge.imgmsg_to_cv2(image_msg, "bgr8") # copy from # classify_image.py image_data = cv2.imencode('.jpg', cv_image)[1].tostring() # Creates graph from saved GraphDef. softmax_tensor = self._session.graph.get_tensor_by_name('softmax:0') predictions = self._session.run( softmax_tensor, {'DecodeJpeg/contents:0': image_data}) predictions = np.squeeze(predictions) # Creates node ID --> English string lookup. node_lookup = classify_image.NodeLookup() top_k = predictions.argsort()[-self.use_top_k:][::-1] for node_id in top_k: human_string = node_lookup.id_to_string(node_id) score = predictions[node_id] if score > self.score_threshold: rospy.loginfo('%s (score = %.5f)' % (human_string, score)) self._pub.publish(human_string) def main(self): rospy.spin() if __name__ == '__main__': classify_image.setup_args() rospy.init_node('rostensorflow') tensor = RosTensorFlow() tensor.main()