def test(test_file, model_file): textarr, labelarr = list(), list() with open(test_file) as testfp: lines = testfp.readlines()[:20] for line in lines: label, text = line.strip().split(' ', 1) textarr.append(text) labelarr.append(label) # for idx, line in enumerate(testlines): # if pu.is_empty_string(line): # continue # label, text = line.split(' ', 1) # print(label, model.predict(text, threshold=0.5), text) pred_value_arr = predict(textarr, ftu.load_model(model_file)) label = [label2value[label] for label in labelarr] print(au.score(label, pred_value_arr, 'auc'))
def load_fasttext_model(self, ft_model_file): self.ft_model = ftu.load_model(ft_model_file)
def load_ft_model(self, ft_model_file): self.ft_model = ftu.load_model(ft_model_file) def save_clf_model(self, clf_model_file): joblib.dump(self.clf_model, clf_model_file)