def __init__(self, model, dtypestr="float32"): """ Creates a BasicIterativeMethod instance in eager execution. :param model: cleverhans.model.Model :param dtypestr: datatype in the string format. """ if not isinstance(model, Model): wrapper_warning() model = CallableModelWrapper(model, "probs") super(BasicIterativeMethod, self).__init__(model, dtypestr)
def __init__(self, model, dtypestr="float32", **kwargs): """ Creates a FastGradientMethod instance in eager execution. :model: cleverhans.model.Model :dtypestr: datatype in the string format. """ del kwargs if not isinstance(model, Model): wrapper_warning() model = CallableModelWrapper(model, "probs") super(FastGradientMethod, self).__init__(model, dtypestr)
def __init__(self, model, sess, dtypestr='float32', **kwargs): if not isinstance(model, Model): wrapper_warning() model = CallableModelWrapper(model, 'probs') super(LBFGS, self).__init__(model, sess, dtypestr, **kwargs) self.feedable_kwargs = ('y_target', ) self.structural_kwargs = [ 'batch_size', 'binary_search_steps', 'max_iterations', 'initial_const', 'clip_min', 'clip_max' ]
def __init__(self, model, sess, dtypestr='float32', **kwargs): """ Note: the model parameter should be an instance of the cleverhans.model.Model abstraction provided by CleverHans. """ if not isinstance(model, Model): wrapper_warning() model = CallableModelWrapper(model, 'probs') super(LBFGS, self).__init__(model, sess, dtypestr, **kwargs) self.feedable_kwargs = ('y_target',) self.structural_kwargs = [ 'batch_size', 'binary_search_steps', 'max_iterations', 'initial_const', 'clip_min', 'clip_max' ]
def __init__(self, model, sess, dtypestr="float32", **kwargs): if not isinstance(model, Model): wrapper_warning() model = CallableModelWrapper(model, "probs") super(LBFGS, self).__init__(model, sess, dtypestr, **kwargs) self.feedable_kwargs = ("y_target",) self.structural_kwargs = [ "batch_size", "binary_search_steps", "max_iterations", "initial_const", "clip_min", "clip_max", ]