def stage2(): with open("../working/tX.dat", "rb") as picklefile: X = cPickle.load(picklefile) # Transform X to tf-idf bin_word_counter = pruning.WordCounter(X, binary=True) similarity.transform_tfidf(X, bin_word_counter) del bin_word_counter ##Save state with open("../working/tX.dat", "wb") as picklefile: cPickle.dump(X, picklefile, -1)
def stage2(): with open("../working/tX.dat", 'rb') as picklefile: X = cPickle.load(picklefile) # Transform X to tf-idf bin_word_counter = pruning.WordCounter(X, binary=True) similarity.transform_tfidf(X, bin_word_counter) del bin_word_counter ##Save state with open("../working/tX.dat", 'wb') as picklefile: cPickle.dump(X, picklefile, -1)
def onego_main(): # Test on toyset. preproc.subset("../raw_data/train.csv", "../data/train.csv", 1, 200000) # Load toyset .csv -> X & Y X, Y = preproc.extract_XY("../data/train.csv") # Prune corpora label_counter = pruning.LabelCounter(Y) word_counter = pruning.WordCounter(X) label_counter.prune(no_below=2, no_above=1.0, max_n=None) word_counter.prune(no_below=2, no_above=0.4, max_n=None) # assume balanced pruning.prune_corpora(X, Y, label_counter, word_counter) del word_counter # free up memory # Transform X to tf-idf bin_word_counter = pruning.WordCounter(X, binary=True) similarity.transform_tfidf(X, bin_word_counter) del bin_word_counter # free up memory # Load hierarchy (parents & children indices) parents_index = preproc.extract_parents(Y, "../raw_data/hierarchy.txt") children_index = preproc.inverse_index(parents_index) # CV-split X & Y (using default params) v_X, v_Y, t_X, t_Y = cv.prop_sample_CV(X=X, Y=Y) del X, Y # free up memory # Obtain k-NN scores & pscores, predict, and calculate F1! k = 70 w1, w2, w3, w4 = 3.4, 0.6, 0.8, 0.2 alpha = 0.9 cat_pns = evaluation.CategoryPNCounter() for d_i, labels_i in izip(v_X, v_Y): scores, pscores = similarity.cossim(d_i, t_X, k, t_Y, parents_index, children_index) ranks = similarity.optimized_ranks(scores, pscores, label_counter, w1, w2, w3, w4) predicted_labels = similarity.predict(ranks, alpha) cat_pns.fill_pns(predicted_labels, labels_i) cat_pns.calculate_cat_pr() MaF = cat_pns.calculate_MaF() print "MaF:", MaF