Example #1
0
def submit_vector():
    # best_vec = []
    # GET THE VALUE HERE
    best_vecs = [{
        'vector': [
            -1.5900117634696895e-18, -1.1089152508024613e-12,
            -2.5448264472393646e-13, 5.156495819895334e-11,
            -1.4685999507818116e-10, -1.7336464013051853e-15,
            7.588385881788844e-16, 2.7525165125385616e-05,
            -1.8852756204130466e-06, -1.5953841373151045e-08,
            8.741325830954951e-10
        ],
        'results': [116101460426.6661, 87860031424.50586],
        'generation':
        32
    }]
    i = 0
    f = open("last_vector_8th.txt", "a")
    for best_vec in best_vecs:
        # break
        x = submit(TEAM_KEY, best_vec["vector"])
        print(x)
        rank = input()
        # SAVING THE VECTOR IN LAST VECTOR
        f.write(str(best_vec))
        f.write("\n")
        f.write(rank)
        f.write("\n")
    # IF THIS VECTOR GETS THE BEST RANK YET, DO:
    # bash save_this_vector.sh
    f.close()
Example #2
0
def main():
    np.set_printoptions(formatter={'float_kind':'{:f}'.format})
    population = generate_population()
    while 1:
        fitness = fitness_function(population)
        np.save('example',population)
        np.save('error',fitness)
        print(population,fitness)
        offspring = np.zeros((16,11))
        offspring[0:2]= sel.rank_selection(population,fitness)
        offspring[0:2]= sel.rank_selection2(population,fitness)
        for i in range(4,10):
            offspring[i] = mut.random_setting_mutation(offspring[rand.randint(0,4)])
        for i in range(10,16):
            first = rand.randint(0,4)
            second = rand.randint(0,4)
            while first is not second:
                second = rand.randint(0,4)
            offspring[i] = cs.mutation_crossover(np.array([offspring[first],offspring[second]]))
        population = np.copy(offspring)
        print(cl.submit(key,np.ndarray.tolist(offspring[0])))
        print(cl.submit(key,np.ndarray.tolist(offspring[1])))
        print(cl.submit(key,np.ndarray.tolist(offspring[2])))
        print(cl.submit(key,np.ndarray.tolist(offspring[3])))
Example #3
0
    def clean(self, values):
        super(ReCaptchaField, self).clean(values[1])
        recaptcha_challenge_value = smart_unicode(values[0])
        recaptcha_response_value = smart_unicode(values[1])

        if settings.DEBUG and recaptcha_response_value == 'PASSED':
            return values[0]

        check_captcha = client.submit(recaptcha_challenge_value, \
                recaptcha_response_value, private_key=self.private_key, \
                remoteip=self.get_remote_ip(), use_ssl=self.use_ssl)
        if not check_captcha.is_valid:
            raise forms.util.ValidationError(
                self.error_messages['captcha_invalid']
            )
        return values[0]
Example #4
0
    def clean(self,values):
        '''
        values[0]= requestID
        values[1]= codefromuser
        '''
        super(NexmoField, self).clean(values[1])
        nexmo_challenge_value = smart_unicode(values[1])
        request_id=smart_unicode(values[0])

        try:
            responce = client.submit(
                request_id,
                nexmo_challenge_value)
            
        except socket.error: # Catch timeouts, etc
            raise ValidationError(
                'network error'
            )

        if responce.status!=0:
            raise ValidationError(
                responce.error_text
            )
        return values[1]
Example #5
0
    generation = Gene.generate_population(POPULATION_SIZE)
    assert all([type(person) is Gene for person in generation])

    for i in range(ITERATIONS):
        print('****************************')
        couples = Gene.pairing(generation)
        children = Gene.mating(couples)
        generation = Gene.selection(generation + children)
        assert all([type(person) is Gene for person in generation])

    # Checking if the change in hyperparameters is useful
    print("Best Soln : ")
    print(BEST_WEIGHTS, BEST_ERROR)

    # Submitting it regardless
    client.submit(SECRET_KEY, list(BEST_WEIGHTS))

# ## Sample Ouput
#
# The format is [gene] , training error, validation error.
#
# A single generation output is :
#
# [ 0.00000000e+00  1.24051937e-01 -6.21157191e+00  4.93390104e-02<br>
#   3.81066382e-02  8.13198767e-05 -6.01791626e-05 -1.25163350e-07<br>
#   3.48379719e-08  4.16166196e-11 -6.73266866e-12] 79068.35618656754 3625009.2445584373<br>
#
# [ 0.00000000e+00  2.48074052e-01 -6.21227586e+00  4.93420788e-02<br>
#   3.81088826e-02  8.13320094e-05 -6.01862275e-05 -1.25174854e-07<br>
#   3.48411764e-08  4.16121405e-11 -6.73257744e-12] 78564.99206532972 3599264.6284862114<br>
#
Example #6
0
# ]
# tempv = [
#     -0.010352359899980625,
#     -1.4938708798725434e-12,
#     -2.1344537013801585e-13,
#     4.754606122495976e-11,
#     -1.7513765845712067e-10,
#     -2.9750369207778414e-20,
#     2.216842207753494e-20,
#     8.683381211976487e-15,
#     -6.662021179304016e-09,
#     -2.6599123253785434e-14,
#     3.026701227755296e-17
# ]
# tempv = [
#     -0.00924596659365373,
#     -1.494818150350766e-12,
#     -2.211532640173319e-13,
#     5.039657579364812e-11,
#     -1.6753978508012588e-10,
#     -9.080082588227132e-25,
#     7.257195414468184e-26,
#     4.605087763217074e-20,
#     -1.3071635934940838e-11,
#     -1.4401903358063287e-17,
#     2.7501251088023155e-21
# ]
server.submit(TEAM_ID, tempv)

# In[ ]:
Example #7
0
    def runEvolution(self, steps: int) -> None:
        """Run step iterations of genetic algorithm"""
        population = self.initializePopulation()

        for iteration in range(steps):
            fitness, testFitness = self.calculateFitness(population)

            sortedIndices = (abs(fitness + testFitness)).argsort()

            population = population[sortedIndices]
            fitness = fitness[sortedIndices]
            testFitness = testFitness[sortedIndices]

            print("Fitness: ", np.array([fitness[0]]))
            print("Test Fitness: ", np.array([testFitness[0]]))
            print("Vector: ", population[0])
            # print("\n", population[0])
            submit(population.tolist()[0])

            with open("generations.txt", "a") as outfile:
                pprint(
                    f"-----------GENERATION: {iteration}--------------",
                    stream=outfile,
                )
                pprint(population, stream=outfile)
                pprint(
                    f"---Train Fitness: {iteration}---",
                    stream=outfile,
                )
                pprint(fitness, stream=outfile)
                pprint(
                    f"---Test Fitness: {iteration}---",
                    stream=outfile,
                )
                pprint(testFitness, stream=outfile)

            input()

            # Gurantee that top two will be selected without any mutation or
            # crossover: 9 = 8 + 1
            nextGeneration = population[:1]
            nonMutatedNextGen = population[:1]

            for crossoverIteration in range(self.populationSize):

                # Select two parents from population
                index_a, index_b = self.selectTwo(population)

                # Cross them
                offspring_a, offspring_b = self.crossOver(
                    population[index_a],
                    population[index_b],
                    fitness[index_a],
                    fitness[index_b],
                )

                nonMutatedNextGen = np.concatenate(
                    (nonMutatedNextGen, [offspring_a, offspring_b]), axis=0
                )

                # Mutate
                offspring_a = self.mutateOffspring(offspring_a)
                offspring_b = self.mutateOffspring(offspring_b)

                # Add to next generation
                nextGeneration = np.concatenate(
                    (nextGeneration, [offspring_a, offspring_b]), axis=0
                )

            population = nextGeneration[:self.populationSize]

            with open("generations.txt", "a") as outfile:
                pprint(
                    f"---After crossover population: {iteration}---",
                    stream=outfile,
                )
                pprint(nonMutatedNextGen, stream=outfile)
                pprint(
                    f"---After mutation population: {iteration}---",
                    stream=outfile,
                )
                pprint(nextGeneration, stream=outfile)
                pprint(
                    f"---After Selection population: {iteration}---",
                    stream=outfile,
                )
                pprint(population, stream=outfile)
Example #8
0
                        -1.155594498963827e-06,
                        -1.4123701076309361e-09,
                        4.27567136105673e-10
                    ]
                    # "errorTuple": [
                    #     39607118493.38789,
                    #     82107826837.5237
                    # ] 8 star


v = [
                        -1.2011582262254875e-22,
                        -4.841884920942542e-13,
                        -3.3920520574732524e-13,
                        5.7520186415565817e-11,
                        -1.2165314793847423e-09,
                        -2.732620328430599e-16,
                        7.837772952003539e-17,
                        6.543320242559382e-06,
                        -1.1555982661911288e-06,
                        -1.1821086653098595e-09,
                        4.199995041318772e-10
                    ]
# "errorTuple": [
#     41208277820.35068,
#     97512445787.4025
# ] 19 

res = client.submit(secrets.KEY, v)
print(res)
Example #9
0
# -1.83977009e-10, -1.47605324e-15,  7.40791508e-16,  2.41394471e-05,
# -1.90069755e-06, -1.58002421e-08,  9.01600023e-10]
#[ 0.00000000e+00, -1.43185174e-12, -2.71229788e-13,  4.15487720e-11,
# -1.74740805e-10, -1.49297563e-15,  7.57681374e-16,  2.38883785e-05,
# -1.87813527e-06, -1.60177440e-08,  8.96744048e-10]

#[ 0.00000000e+00, -1.50721525e-12, -2.38330355e-13,  4.60972509e-11,
# -1.89423828e-10, -1.73086769e-15,  9.13556565e-16,  2.42086504e-05,
# -1.99153311e-06, -1.49579921e-08,  9.24081436e-10]

#[ 0.00000000e+00, -1.56391135e-12, -2.44028674e-13,  3.93282451e-11,
# -1.83236407e-10, -1.63784812e-15,  8.96217971e-16,  2.54014231e-05,
# -1.99701550e-06, -1.52996086e-08,  9.21303663e-10]

#best: best-submission-7
# [ 0.00000000e+00, -1.55976128e-12, -2.34784495e-13,  4.29084694e-11,
# -1.89954128e-10, -1.61562430e-15,  8.62092675e-16,  2.42243848e-05,
# -1.99597630e-06, -1.47379698e-08,  9.22303588e-10]

#[ 0.00000000e+00,-1.20706058e-12, -2.32612320e-13 , 4.50071868e-11,
# -1.88160202e-10, -1.85757143e-15,  8.83139750e-16,  2.49351778e-05,
# -1.90201334e-06, -1.75150969e-08,  9.37418225e-10]

#best:
#[ 0.00000000e+00, -1.56391135e-12, -2.44028674e-13,  3.93282451e-11,
# -1.83236407e-10, -1.63784812e-15,  8.96217971e-16,  2.54014231e-05,
# -1.99701550e-06, -1.52996086e-08,  9.21303663e-10]

print(
    client.submit('GU0MCOlKFoi0lk7HmBpwjhFGlcTTZvO77FA3FVMq0m4lYCMIho',
                  weights))
Example #10
0
import client
import constants

v = [
    -1.3675704081705325e-09,
    -4.08138881979391e-13,
    -2.5005644219889285e-10,
    4.662859881370373e-12,
    6.150047217005676e-12,
    -9.161738820014592e-16,
    7.340163120738338e-10,
    5.018644203347845e-06,
    -1.2133184934354136e-06,
    -6.572866429792964e-10,
    4.4955546296023274e-10,
]

res = client.submit(constants.SECRET_KEY, v)

print(res)
Example #11
0
wt2 = [
    9.913269136508803e-19, -1.3651432220474988e-12, -2.298198393159188e-13,
    5.0168495585679045e-11, -1.9142692264536784e-10, -5.708139268721448e-16,
    9.222307658340838e-16, 3.2077307818350485e-05, -2.1023487765642816e-06,
    -1.3862270237706852e-08, 8.640892314427145e-10
]

wt2 = [
    9.915672591936594e-19, -1.3654972148183978e-12, -2.3013915250437e-13,
    5.0202893139928207e-11, -1.9197681316495378e-10, -5.695747268129501e-16,
    9.247415970198904e-16, 3.204237015306432e-05, -2.0963811355424884e-06,
    -1.3922304080398685e-08, 8.619693246341732e-10
]
# wt2 = [9.919603226020886e-19, -1.3643039330187416e-12, -2.300025187475665e-13, 5.01420607948874e-11, -1.9171213875705204e-10, -5.704916302387945e-16, 9.249323842424032e-16, 3.2018325502112234e-05, -2.092484885878187e-06, -1.3842788049128266e-08, 8.640308071699504e-10]

# wt2 = [1.0152006490722198e-18, -1.2675221413533424e-12, -2.219456862667535e-13, 5.2746185700513954e-11, -2.048741688083159e-10, -5.906269772197416e-16, 9.464899300647767e-16, 3.105910784304104e-05, -2.055769267289396e-06, -1.6494805651419324e-08, 9.224439203791275e-10]
status = server.submit(TEAM_ID, list(wt2))
print(status)

# for i in range(10):
# weights[7] -= 0.02e-05
train_err, valid_err = server.get_errors(TEAM_ID, list(wt2))
tot_err = train_err + valid_err
# print(wt2)
print('fitness:')
print("{:e}".format(-tot_err), "{:e}".format(train_err),
      "{:e}".format(valid_err))

# INITIAL_WEIGHTS = [1.0016758736507022e-18, -1.3696155264603411e-12, -2.300768584393704e-13, 4.617028826499339e-11, -1.7627848513209744e-10, -1.7730847899381538e-15, 8.38639892842589e-16, 2.2778568625222342e-05, -1.9784050209132108e-06, -1.5846641527483793e-08, 9.522475355911996e-10]