def plot_percen(irma_tc, exp, if_exp, axs):
    """ Plot irma damage in %. """
    # south
    extent = u_plot._get_borders(exp.coord)
    extent = ([
        extent[0] - BUFFER_DEG, extent[1] + BUFFER_DEG, extent[2] - BUFFER_DEG,
        extent[3] + BUFFER_DEG
    ])
    axs.set_extent((extent))
    u_plot.add_shapes(axs)

    imp_irma = Impact()
    imp_irma.calc(exp, if_exp, irma_tc)
    imp_irma.eai_exp[exp.value > 0] = \
        imp_irma.eai_exp[exp.value > 0]/exp.value[exp.value > 0]*100
    imp_irma.eai_exp[exp.value == 0] = 0.
    sel_exp = imp_irma.eai_exp > 0
    im = axs.hexbin(exp.coord[sel_exp, 1],
                    exp.coord[sel_exp, 0],
                    C=imp_irma.eai_exp[sel_exp],
                    reduce_C_function=np.average,
                    transform=ccrs.PlateCarree(),
                    gridsize=2000,
                    cmap='YlOrRd',
                    vmin=0,
                    vmax=50)
    axs.set_title('')
    axs.grid(False)
    scale_bar(axs, (0.90, 0.90), 10)

    return im
def plot_left(exp, data_irma, tc_irma, ax, scale_pos, cntour_loc, label_loc):
    """ Plot exposed value, irma track and irma wind field. """
    extent = u_plot._get_borders(exp.coord)
    extent = ([extent[0] - BUFFER_DEG, extent[1] + BUFFER_DEG, extent[2] -\
               BUFFER_DEG, extent[3] + BUFFER_DEG])
    ax.set_extent((extent))
    u_plot.add_shapes(ax)

    sel_pos = np.argwhere(exp.value > 0)[:, 0]
    ax.hexbin(exp.coord[sel_pos, 1],
              exp.coord[sel_pos, 0],
              C=exp.value[sel_pos],
              reduce_C_function=np.average,
              transform=ccrs.PlateCarree(),
              gridsize=2000,
              norm=LogNorm(vmin=MIN_VAL, vmax=MAX_VAL),
              cmap='YlOrRd',
              vmin=1.0e2,
              vmax=MAX_VAL)
    ax.set_title('')
    ax.grid(False)
    scale_bar(ax, scale_pos, 10)

    track = data_irma.data[0]
    ax.plot(track.lon.values,
            track.lat.values,
            linestyle='solid',
            transform=ccrs.PlateCarree(),
            lw=2,
            color='k')
    leg_lines = [
        Line2D([0], [0], color='k', lw=2),
        Line2D([0], [0], color='grey', lw=1, ls=':')
    ]
    leg_names = ['Irma track', 'wind field (kn)']
    if 'bbox' in label_loc:
        ax.legend(leg_lines,
                  leg_names,
                  bbox_to_anchor=label_loc['bbox'],
                  loc=label_loc['loc'])
    else:
        ax.legend(leg_lines, leg_names, loc=label_loc['loc'])

    tc_irma.intensity *= MS2KN
    grid_x, grid_y = np.mgrid[tc_irma.centroids.coord[:, 1].min() : \
                              tc_irma.centroids.coord[:, 1].max() : complex(0, 2000), \
                              tc_irma.centroids.coord[:, 0].min() : \
                              tc_irma.centroids.coord[:, 0].max() : complex(0, 2000)]
    grid_im = griddata(
        (tc_irma.centroids.coord[:, 1], tc_irma.centroids.coord[:, 0]),
        np.array(tc_irma.intensity[0].todense()).squeeze(), (grid_x, grid_y))
    cs = ax.contour(grid_x, grid_y, grid_im, linewidths=1.0, linestyles=':', \
                    levels=[60, 80, 100, 120], colors=['grey', 'grey', 'grey', 'grey', 'grey'])
    ax.clabel(cs,
              inline=1,
              fontsize=10,
              manual=cntour_loc,
              rotation=-20,
              fmt='%1.0f')
    tc_irma.intensity /= MS2KN
def plot_right(irma_tc, exp, ax, scale_pos, plot_line=False):
    """ Plot irma damage in USD. """
    if_exp = ImpactFuncSet()
    if_em = IFTropCyclone()
    if_em.set_emanuel_usa()
    if_exp.add_func(if_em)

    imp_irma = Impact()
    imp_irma.calc(exp, if_exp, irma_tc)
    extent = u_plot._get_borders(exp.coord)
    extent = ([
        extent[0] - BUFFER_DEG, extent[1] + BUFFER_DEG, extent[2] - BUFFER_DEG,
        extent[3] + BUFFER_DEG
    ])
    ax.set_extent((extent))
    u_plot.add_shapes(ax)

    sel_pos = np.argwhere(imp_irma.eai_exp > 0)[:, 0]
    hex_bin = ax.hexbin(imp_irma.coord_exp[sel_pos, 1],
                        imp_irma.coord_exp[sel_pos, 0],
                        C=imp_irma.eai_exp[sel_pos],
                        reduce_C_function=np.average,
                        transform=ccrs.PlateCarree(),
                        gridsize=2000,
                        norm=LogNorm(vmin=MIN_VAL, vmax=MAX_VAL),
                        cmap='YlOrRd',
                        vmin=MIN_VAL,
                        vmax=MAX_VAL)
    ax.set_title('')
    ax.grid(False)
    add_cntry_names(ax, extent)
    scale_bar(ax, scale_pos, 10)

    if plot_line:
        x1, y1 = [-64.57, -64.82], [18.28, 18.47]
        ax.plot(x1, y1, linewidth=1.0, color='grey', linestyle='--')

    return hex_bin
Example #4
0
    def _plot_warn(
            self,
            run_datetime,
            thresholds,
            decision_level,
            decision_dict,
            polygon_file,
            polygon_file_crs,
            title,
            proj=ccrs.PlateCarree(),
            figsize=(9, 13),
            adapt_fontsize=True,
    ):
        """plotting the warning level of each warning region based on thresholds"""
        # select hazard with run_datetime
        # pylint: disable=protected-access
        if run_datetime is None:
            run_datetime = self.run_datetime[0]
        haz_ind = np.argwhere(np.isin(self.run_datetime, run_datetime))[0][0]

        kwargs = dict()
        kwargs["cmap"] = CMAP_WARNPROB
        kwargs["s"] = 5
        kwargs["marker"] = ","
        kwargs["norm"] = BoundaryNorm(np.linspace(0, 1, 11),
                                      CMAP_WARNPROB.N,
                                      clip=True)

        # Generate each subplot
        fig, axis, _fontsize = u_plot.make_map(1,
                                               proj=proj,
                                               figsize=figsize,
                                               adapt_fontsize=adapt_fontsize)
        if isinstance(axis, np.ndarray):
            axis = axis[0]
        tit = title
        fig.set_size_inches(9, 8)

        # add warning regions
        shp = shapereader.Reader(polygon_file)
        transformer = pyproj.Transformer.from_crs(polygon_file_crs,
                                                  self._impact[haz_ind].crs,
                                                  always_xy=True)
        # checking the decision dict and define the corresponding functions
        if not (isinstance(decision_dict["probability_aggregation"], float)
                & isinstance(decision_dict["area_aggregation"], float)):
            ValueError(" If decision_level is 'exposure_point'," +
                       "parameters probability_aggregation and " +
                       "area_aggregation of " +
                       "Forecast.plot_warn_map() must both be " +
                       "floats between [0..1]. Which each " +
                       "specify quantiles.")
        decision_dict_functions = decision_dict.copy()
        for aggregation in decision_dict:
            if isinstance(decision_dict[aggregation], float):
                decision_dict_functions[aggregation] = np.percentile
            elif decision_dict[aggregation] == "sum":
                decision_dict_functions[aggregation] = np.sum
            elif decision_dict[aggregation] == "mean":
                decision_dict_functions[aggregation] = np.mean
            else:
                raise ValueError("Parameter area_aggregation of " +
                                 "Forecast.plot_warn_map() must eiter be " +
                                 "a float between [0..1], which " +
                                 "specifys a quantile. or 'sum' or 'mean'.")

        for geometry, _ in zip(shp.geometries(), shp.records()):
            geom2 = shapely.ops.transform(transformer.transform, geometry)
            in_geom = u_coord.coord_on_land(
                lat=self._impact[haz_ind].coord_exp[:, 0],
                lon=self._impact[haz_ind].coord_exp[:, 1],
                land_geom=geom2,
            )
            if not in_geom.any():
                continue
            # decide warning level
            warn_level = 0
            for ind_i, warn_thres_i in enumerate(thresholds):
                if decision_level == "exposure_point":
                    # decision at each grid_point
                    probabilities = np.squeeze(
                        np.asarray((self._impact[haz_ind].imp_mat >=
                                    warn_thres_i).sum(axis=0) /
                                   self._impact[haz_ind].event_id.size))
                    # quantiles over probability
                    area = (probabilities[in_geom] >=
                            decision_dict["probability_aggregation"]).sum()
                    # quantiles over area
                    if area >= (in_geom.sum() *
                                decision_dict["area_aggregation"]):
                        warn_level = ind_i + 1
                elif decision_level == "polygon":
                    # aggregation over area
                    if isinstance(decision_dict["area_aggregation"], float):
                        value_per_member = decision_dict_functions[
                            "area_aggregation"](
                                self._impact[haz_ind].imp_mat[:,
                                                              in_geom].todense(
                                                              ),
                                decision_dict["area_aggregation"],
                                axis=1,
                            )
                    else:
                        value_per_member = decision_dict_functions[
                            "area_aggregation"](self._impact[haz_ind].
                                                imp_mat[:, in_geom].todense(),
                                                axis=1)
                    # aggregation over members/probability
                    if isinstance(decision_dict["probability_aggregation"],
                                  float):
                        value_per_region = decision_dict_functions[
                            "probability_aggregation"](
                                value_per_member,
                                decision_dict["probability_aggregation"])
                    else:
                        value_per_region = decision_dict_functions[
                            "probability_aggregation"](value_per_member)
                    # warn level decision
                    if value_per_region >= warn_thres_i:
                        warn_level = ind_i + 1
                else:
                    raise ValueError(
                        "Parameter decision_level of " +
                        "Forecast.plot_warn_map() must eiter be " +
                        "'exposure_point' or 'polygon'.")
            # plot warn_region with specific color (dependent on warning level)
            axis.add_geometries(
                [geom2],
                crs=ccrs.PlateCarree(),
                facecolor=COLORS_WARN[warn_level, :],
                edgecolor="gray",
            )

        # Create legend in this axis
        hazard_levels = [
            "1: Minimal or no hazard",
            "2: Moderate hazard",
            "3: Significant hazard",
            "4: Severe hazard",
            "5: Very severe hazard",
        ]
        legend_elements = [
            Patch(facecolor=COLORS_WARN[n, :],
                  edgecolor="gray",
                  label=hazard_level)
            for n, hazard_level in enumerate(hazard_levels)
        ]

        axis.legend(
            handles=legend_elements,
            loc="upper center",
            framealpha=0.5,
            bbox_to_anchor=(0.5, -0.02),
            ncol=3,
        )
        title_position = {
            "model_text": [0.02, 0.91],
            "explain_text": [0.02, 0.87],
            "event_day": [0.98, 0.91],
            "run_start": [0.98, 0.87],
        }
        left_right = {
            "model_text": "left",
            "explain_text": "left",
            "event_day": "right",
            "run_start": "right",
        }
        color = {
            "model_text": "k",
            "explain_text": "k",
            "event_day": "r",
            "run_start": "k",
        }
        for t_i in tit:
            plt.figtext(
                title_position[t_i][0],
                title_position[t_i][1],
                tit[t_i],
                fontsize="xx-large",
                color=color[t_i],
                ha=left_right[t_i],
            )

        extent = u_plot._get_borders(self._impact[haz_ind].coord_exp)
        axis.set_extent((extent), ccrs.PlateCarree())
        fig.tight_layout()
        return fig, axis
Example #5
0
    def _plot_exc_prob(
            self,
            run_datetime,
            threshold,
            title,
            cbar_label,
            proj=ccrs.PlateCarree(),
            polygon_file=None,
            polygon_file_crs="epsg:4326",
            mask=None,
            figsize=(9, 13),
            adapt_fontsize=True,
    ):
        """plot the probability of reaching a threshold"""
        # select hazard with run_datetime
        # pylint: disable=protected-access
        if run_datetime is None:
            run_datetime = self.run_datetime[0]
        haz_ind = np.argwhere(np.isin(self.run_datetime, run_datetime))[0][0]
        extend = "neither"
        value = np.squeeze(
            np.asarray(
                (self._impact[haz_ind].imp_mat > threshold).sum(axis=0) /
                self._impact[haz_ind].event_id.size))
        if mask is not None:
            value[np.invert(mask)] = np.nan
        coord = self._impact[haz_ind].coord_exp
        # Generate array of values used in each subplot
        array_sub = value
        shapes = True
        if not polygon_file:
            shapes = False
        var_name = cbar_label
        geo_coord = coord
        num_im, list_arr = u_plot._get_collection_arrays(array_sub)
        list_tit = to_list(num_im, title, "title")
        list_name = to_list(num_im, var_name, "var_name")
        list_coord = to_list(num_im, geo_coord, "geo_coord")

        kwargs = dict()
        kwargs["cmap"] = CMAP_WARNPROB
        kwargs["s"] = 5
        kwargs["marker"] = ","
        kwargs["norm"] = BoundaryNorm(np.linspace(0, 1, 11),
                                      CMAP_WARNPROB.N,
                                      clip=True)

        # Generate each subplot
        fig, axis_sub, _fontsize = u_plot.make_map(
            num_im, proj=proj, figsize=figsize, adapt_fontsize=adapt_fontsize)
        if not isinstance(axis_sub, np.ndarray):
            axis_sub = np.array([[axis_sub]])
        fig.set_size_inches(9, 8)
        for array_im, axis, tit, name, coord in zip(list_arr,
                                                    axis_sub.flatten(),
                                                    list_tit, list_name,
                                                    list_coord):
            if coord.shape[0] != array_im.size:
                raise ValueError("Size mismatch in input array: %s != %s." %
                                 (coord.shape[0], array_im.size))

            hex_bin = axis.scatter(coord[:, 1],
                                   coord[:, 0],
                                   c=array_im,
                                   transform=ccrs.PlateCarree(),
                                   **kwargs)
            if shapes:
                # add warning regions
                shp = shapereader.Reader(polygon_file)
                transformer = pyproj.Transformer.from_crs(
                    polygon_file_crs,
                    self._impact[haz_ind].crs,
                    always_xy=True)
                for geometry, _ in zip(shp.geometries(), shp.records()):
                    geom2 = shapely.ops.transform(transformer.transform,
                                                  geometry)
                    axis.add_geometries(
                        [geom2],
                        crs=ccrs.PlateCarree(),
                        facecolor="none",
                        edgecolor="gray",
                    )

            # Create colorbar in this axis
            cbax = make_axes_locatable(axis).append_axes("bottom",
                                                         size="6.5%",
                                                         pad=0.3,
                                                         axes_class=plt.Axes)
            cbar = plt.colorbar(hex_bin,
                                cax=cbax,
                                orientation="horizontal",
                                extend=extend)
            cbar.set_label(name)
            title_position = {
                "model_text": [0.02, 0.94],
                "explain_text": [0.02, 0.9],
                "event_day": [0.98, 0.94],
                "run_start": [0.98, 0.9],
            }
            left_right = {
                "model_text": "left",
                "explain_text": "left",
                "event_day": "right",
                "run_start": "right",
            }
            color = {
                "model_text": "k",
                "explain_text": "k",
                "event_day": "r",
                "run_start": "k",
            }
            for t_i in tit:
                plt.figtext(
                    title_position[t_i][0],
                    title_position[t_i][1],
                    tit[t_i],
                    fontsize="xx-large",
                    color=color[t_i],
                    ha=left_right[t_i],
                )
            extent = u_plot._get_borders(coord)
            axis.set_extent((extent), ccrs.PlateCarree())
        fig.tight_layout()
        return fig, axis_sub
Example #6
0
    def _plot_imp_map(
            self,
            run_datetime,
            title,
            cbar_label,
            polygon_file=None,
            polygon_file_crs="epsg:4326",
            proj=ccrs.PlateCarree(),
            figsize=(9, 13),
            adapt_fontsize=True,
    ):
        # select hazard with run_datetime
        # pylint: disable=protected-access
        if run_datetime is None:
            run_datetime = self.run_datetime[0]
        haz_ind = np.argwhere(np.isin(self.run_datetime, run_datetime))[0][0]
        # tryout new plot with right projection
        extend = "neither"
        value = self._impact[haz_ind].eai_exp
        #    value[np.invert(mask)] = np.nan
        coord = self._impact[haz_ind].coord_exp

        # Generate array of values used in each subplot
        array_sub = value
        shapes = True
        if not polygon_file:
            shapes = False
        var_name = cbar_label
        geo_coord = coord
        num_im, list_arr = u_plot._get_collection_arrays(array_sub)
        list_tit = to_list(num_im, title, "title")
        list_name = to_list(num_im, var_name, "var_name")
        list_coord = to_list(num_im, geo_coord, "geo_coord")

        kwargs = dict()
        kwargs["cmap"] = CMAP_IMPACT
        kwargs["s"] = 5
        kwargs["marker"] = ","
        kwargs["norm"] = BoundaryNorm(
            np.append(
                np.append([0], [10**x for x in np.arange(0, 2.9, 2.9 / 9)]),
                [10**x for x in np.arange(3, 7, 4 / 90)],
            ),
            CMAP_IMPACT.N,
            clip=True,
        )

        # Generate each subplot
        fig, axis_sub, _fontsize = u_plot.make_map(
            num_im, proj=proj, figsize=figsize, adapt_fontsize=adapt_fontsize)
        if not isinstance(axis_sub, np.ndarray):
            axis_sub = np.array([[axis_sub]])
        fig.set_size_inches(9, 8)
        for array_im, axis, tit, name, coord in zip(list_arr,
                                                    axis_sub.flatten(),
                                                    list_tit, list_name,
                                                    list_coord):
            if coord.shape[0] != array_im.size:
                raise ValueError("Size mismatch in input array: %s != %s." %
                                 (coord.shape[0], array_im.size))
            # Binned image with coastlines
            extent = u_plot._get_borders(coord)
            axis.set_extent((extent), ccrs.PlateCarree())
            hex_bin = axis.scatter(coord[:, 1],
                                   coord[:, 0],
                                   c=array_im,
                                   transform=ccrs.PlateCarree(),
                                   **kwargs)
            if shapes:
                # add warning regions
                shp = shapereader.Reader(polygon_file)
                transformer = pyproj.Transformer.from_crs(
                    polygon_file_crs,
                    self._impact[haz_ind].crs,
                    always_xy=True)
                for geometry, _ in zip(shp.geometries(), shp.records()):
                    geom2 = shapely.ops.transform(transformer.transform,
                                                  geometry)
                    axis.add_geometries(
                        [geom2],
                        crs=ccrs.PlateCarree(),
                        facecolor="none",
                        edgecolor="gray",
                    )
            else:  # add country boundaries
                u_plot.add_shapes(axis)
            # Create colorbar in this axis
            cbax = make_axes_locatable(axis).append_axes("bottom",
                                                         size="6.5%",
                                                         pad=0.3,
                                                         axes_class=plt.Axes)
            cbar = plt.colorbar(hex_bin,
                                cax=cbax,
                                orientation="horizontal",
                                extend=extend)
            cbar.set_label(name)
            cbar.formatter.set_scientific(False)
            cbar.set_ticks([0, 1000, 10000, 100000, 1000000])
            cbar.set_ticklabels(
                ["0", "1 000", "10 000", "100 000", "1 000 000"])
            title_position = {
                "model_text": [0.02, 0.85],
                "explain_text": [0.02, 0.81],
                "event_day": [0.98, 0.85],
                "run_start": [0.98, 0.81],
            }
            left_right = {
                "model_text": "left",
                "explain_text": "left",
                "event_day": "right",
                "run_start": "right",
            }
            color = {
                "model_text": "k",
                "explain_text": "k",
                "event_day": "r",
                "run_start": "k",
            }
            for t_i in tit:
                plt.figtext(
                    title_position[t_i][0],
                    title_position[t_i][1],
                    tit[t_i],
                    fontsize="xx-large",
                    color=color[t_i],
                    ha=left_right[t_i],
                )

        fig.tight_layout()
        fig.subplots_adjust(top=0.8)
        return fig, axis_sub
Example #7
0
    def _plot_exc_prob(self,
                       run_datetime,
                       threshold,
                       title,
                       cbar_label,
                       proj=ccrs.PlateCarree(),
                       polygon_file=None,
                       polygon_file_crs='epsg:4326',
                       mask=None,
                       figsize=(9, 13)):
        """  plot the probability of reaching a threshold """
        # select hazard with run_datetime
        if run_datetime is None:
            run_datetime = self.run_datetime[0]
        haz_ind = np.argwhere(np.isin(self.run_datetime, run_datetime))[0][0]
        extend = 'neither'
        value = np.squeeze(
            np.asarray(
                (self._impact[haz_ind].imp_mat > threshold).sum(axis=0) /
                self._impact[haz_ind].event_id.size))
        if mask is not None:
            value[np.invert(mask)] = np.nan
        coord = self._impact[haz_ind].coord_exp
        # Generate array of values used in each subplot
        array_sub = value
        shapes = True
        if not polygon_file:
            shapes = False
        var_name = cbar_label
        geo_coord = coord
        num_im, list_arr = u_plot._get_collection_arrays(array_sub)
        list_tit = to_list(num_im, title, 'title')
        list_name = to_list(num_im, var_name, 'var_name')
        list_coord = to_list(num_im, geo_coord, 'geo_coord')

        kwargs = dict()
        kwargs['cmap'] = CMAP_WARNPROB
        kwargs['s'] = 5
        kwargs['marker'] = ','
        kwargs['norm'] = BoundaryNorm(np.linspace(0, 1, 11),
                                      CMAP_WARNPROB.N,
                                      clip=True)

        # Generate each subplot
        fig, axis_sub = u_plot.make_map(num_im, proj=proj, figsize=figsize)
        if not isinstance(axis_sub, np.ndarray):
            axis_sub = np.array([[axis_sub]])
        fig.set_size_inches(9, 8)
        for array_im, axis, tit, name, coord in zip(list_arr,
                                                    axis_sub.flatten(),
                                                    list_tit, list_name,
                                                    list_coord):
            if coord.shape[0] != array_im.size:
                raise ValueError("Size mismatch in input array: %s != %s." % \
                                 (coord.shape[0], array_im.size))

            hex_bin = axis.scatter(coord[:, 1], coord[:, 0], c=array_im, \
                                   transform=ccrs.PlateCarree(), **kwargs)
            if shapes:
                # add warning regions
                shp = shapereader.Reader(polygon_file)
                transformer = pyproj.Transformer.from_crs(
                    polygon_file_crs,
                    self._impact[haz_ind].crs,
                    always_xy=True)
                for geometry, _ in zip(shp.geometries(), shp.records()):
                    geom2 = shapely.ops.transform(transformer.transform,
                                                  geometry)
                    axis.add_geometries([geom2], crs=ccrs.PlateCarree(), facecolor='', \
                                        edgecolor='gray')

            # Create colorbar in this axis
            cbax = make_axes_locatable(axis).append_axes('bottom', size="6.5%", \
                                                         pad=0.3, axes_class=plt.Axes)
            cbar = plt.colorbar(hex_bin,
                                cax=cbax,
                                orientation='horizontal',
                                extend=extend)
            cbar.set_label(name)
            title_position = {
                'model_text': [0.02, 0.94],
                'explain_text': [0.02, 0.9],
                'event_day': [0.98, 0.94],
                'run_start': [0.98, 0.9]
            }
            left_right = {
                'model_text': 'left',
                'explain_text': 'left',
                'event_day': 'right',
                'run_start': 'right'
            }
            color = {
                'model_text': 'k',
                'explain_text': 'k',
                'event_day': 'r',
                'run_start': 'k'
            }
            for t_i in tit:
                plt.figtext(title_position[t_i][0],
                            title_position[t_i][1],
                            tit[t_i],
                            fontsize='xx-large',
                            color=color[t_i],
                            ha=left_right[t_i])
            extent = u_plot._get_borders(coord)
            axis.set_extent((extent), ccrs.PlateCarree())

        return fig, axis_sub