Example #1
0
 def visit_TheoryFunction(self, x):
     """
     Theory functions are mapped to functions.
     """
     isnum = lambda y: y.type == _ast.ASTType.Symbol and y.symbol.type == _clingo.SymbolType.Number
     if x.name == "-" and len(x.arguments) == 1:
         rhs = self(x.arguments[0])
         if isnum(rhs):
             return _ast.Symbol(x.location, _clingo.Number(-rhs.symbol.number))
         else:
             return _ast.UnaryOperation(x.location, _ast.UnaryOperator.Minus, rhs)
     elif (x.name == "+" or x.name == "-") and len(x.arguments) == 2:
         lhs = self(x.arguments[0])
         rhs = self(x.arguments[1])
         op  = _ast.BinaryOperator.Plus if x.name == "+" else _ast.BinaryOperator.Minus
         if isnum(lhs) and isnum(rhs):
             lhs = lhs.symbol.number
             rhs = rhs.symbol.number
             return _ast.Symbol(x.location, _clingo.Number(lhs + rhs if x.name == "+" else lhs - rhs))
         else:
             return _ast.BinaryOperation(x.location, op, lhs, rhs)
     elif x.name == "-" and len(x.arguments) == 2:
         return _ast.BinaryOperation(x.location, _ast.BinaryOperator.Minus, self(x.arguments[0]), self(x.arguments[1]))
     elif (x.name, TheoryParser.binary) in TheoryParser.table or (x.name, TheoryParser.unary) in TheoryParser.table:
         raise RuntimeError("operator not handled: {}".format(str_location(x.location)))
     else:
         return _ast.Function(x.location, x.name, [self(a) for a in x.arguments], False)
Example #2
0
    def transform(self, atom):
        loc          = atom.location
        false        = self.__false_atom(loc)
        atom, ranges = transform_theory_atom(atom)
        variables    = get_variables(atom)
        param        = time_parameter(loc)
        shift        = _ast.Variable(loc, g_tel_shift_variable)
        aux          = self.__aux_atom(loc, variables + [param])
        saux         = self.__aux_atom(loc, variables + [shift], inc=0)
        rules        = []

        if self.__false_external is None:
            rules.append(_tf.External(loc, false.atom, []))

        rules.append(_ast.Rule(loc, atom, [aux]))

        if ranges:
            elems = []
            for (lhs, rhs), heads in ranges:
                cond = []
                diff = _ast.BinaryOperation(loc, _ast.BinaryOperator.Minus, param, shift)
                if lhs.ast_type != _ast.ASTType.SymbolicTerm or lhs.symbol.type != _clingo.SymbolType.Number or lhs.symbol.number > 0:
                    cond.append(_ast.Literal(loc, _ast.Sign.NoSign, _ast.Comparison(_ast.ComparisonOperator.LessEqual, lhs, diff)))

                if rhs.ast_type != _ast.ASTType.SymbolicTerm or rhs.symbol.type != _clingo.SymbolType.Supremum:
                    cond.append(_ast.Literal(loc, _ast.Sign.NoSign, _ast.Comparison(_ast.ComparisonOperator.LessEqual, diff, rhs)))

                elems.extend([_ast.ConditionalLiteral(loc, _ast.Literal(loc, _ast.Sign.NoSign, head), cond) for head in heads])

            rules.append(_ast.Rule(loc, _ast.Disjunction(loc, elems), [saux, false]))

        return aux, rules
Example #3
0
 def __get_param(self, name, location):
     n = name.replace('\'', '')
     primes = len(name) - len(n)
     param = ast.SymbolicTerm(location, self.parameter)
     if primes > 0:
         param = ast.BinaryOperation(
             location, ast.BinaryOperator.Minus, param,
             ast.SymbolicTerm(location, Number(primes)))
     return n, param
Example #4
0
def transform(inputs, callback):
    """
    Transforms the given list of temporal programs in string form into an ASP
    program.

    Returns the future predicates whose atoms have to be set to false if
    referring to the future, and program parts that have to be regrounded if
    there are constraints referring to the future.

    Arguments:
    inputs   -- The list of inputs.
    callback -- Callback for rewritten statements.
    """
    loc = {
        'begin': {
            'line': 1,
            'column': 1,
            'filename': '<transform>'
        },
        'end': {
            'line': 1,
            'column': 1,
            'filename': '<transform>'
        }
    }
    future_predicates = set()
    constraint_parts = {}
    time = _ast.Symbol(loc, _clingo.Function(_tf.g_time_parameter_name))
    wrap_lit = lambda a: _ast.Literal(loc, _ast.Sign.NoSign, a)

    # apply transformer to program
    def append(s):
        if s is not None:
            callback(s)

    aux_rules = []
    transformer = _prg.ProgramTransformer(future_predicates, constraint_parts,
                                          aux_rules)
    for i in inputs:
        _clingo.parse_program(i, lambda s: append(transformer.visit(s)))
    if aux_rules:
        callback(
            _ast.Program(loc, "always", [
                _ast.Id(loc, _tf.g_time_parameter_name),
                _ast.Id(loc, _tf.g_time_parameter_name_alt)
            ]))
        for rule in aux_rules:
            callback(rule)

    # add auxiliary rules for future predicates
    future_sigs = []
    if len(future_predicates) > 0:
        callback(
            _ast.Program(loc, "always", [
                _ast.Id(loc, _tf.g_time_parameter_name),
                _ast.Id(loc, _tf.g_time_parameter_name_alt)
            ]))
        for name, arity, positive, shift in sorted(future_predicates):
            variables = [
                _ast.Variable(loc, "{}{}".format(_tf.g_variable_prefix, i))
                for i in range(arity)
            ]
            s = _ast.Symbol(loc, _clingo.Number(shift))
            t_shifted = _ast.BinaryOperation(loc, _ast.BinaryOperator.Plus,
                                             time, s)
            add_sign = lambda lit: lit if positive else _ast.UnaryOperation(
                loc, _ast.UnaryOperator.Minus, lit)
            p_current = _ast.SymbolicAtom(
                add_sign(_ast.Function(loc, name, variables + [time], False)))
            f_current = _ast.SymbolicAtom(
                add_sign(
                    _ast.Function(loc, _tf.g_future_prefix + name,
                                  variables + [s, time], False)))
            callback(_ast.Rule(loc, wrap_lit(p_current),
                               [wrap_lit(f_current)]))
            future_sigs.append(
                (_tf.g_future_prefix + name, arity + 2, positive))

    # gather rules for constraints referring to the future
    reground_parts = []
    if len(constraint_parts) > 0:
        for (name, shift), rules in constraint_parts.items():
            assert (shift > 0)
            params = [
                _ast.Id(loc, _tf.g_time_parameter_name),
                _ast.Id(loc, _tf.g_time_parameter_name_alt)
            ]
            # parts to be regrounded
            part = "{}_0_{}".format(name, shift - 1)
            callback(_ast.Program(loc, part, params))
            for p, l in rules:
                callback(p)
            reground_parts.append((name, part, range(shift)))
            # parts that no longer have to be regrounded
            last_part = "{}_{}".format(name, shift)
            callback(_ast.Program(loc, last_part, params))
            for p, l in rules:
                callback(l)
            reground_parts.append((name, last_part, range(shift, shift + 1)))

    def add_part(part_name, atom_name, statement, wrap=lambda x: x):
        params = [
            _ast.Id(loc, _tf.g_time_parameter_name),
            _ast.Id(loc, _tf.g_time_parameter_name_alt)
        ]
        callback(_ast.Program(loc, part_name, params))
        atom = wrap(
            _ast.SymbolicAtom(_ast.Function(loc, atom_name, [time], False)))
        callback(statement(loc, atom, []))

    add_part('initial', '__initial', _ast.Rule, wrap_lit)
    add_part('always', '__final', _tf.External)

    reground_parts.append(('always', 'always', range(1)))
    reground_parts.append(('dynamic', 'dynamic', range(1)))
    reground_parts.append(('initial', 'initial', range(1)))

    def no_program(s):
        if s.type != _ast.ASTType.Program:
            callback(s)

    _clingo.parse_program(
        _dedent('''\
        #theory tel {
            formula_body  {
                &   : 7, unary;         % prefix for keywords
                -   : 7, unary;         % classical negation
                +   : 6, binary, left;  % arithmetic +
                -   : 6, binary, left;  % arithmetic -
                ~   : 5, unary;         % negation
                <   : 5, unary;         % previous
                <   : 5, binary, right; % n x previous
                <:  : 5, unary;         % weak previous
                <:  : 5, binary, right; % n x weak previous
                <?  : 5, unary;         % eventually-
                <*  : 5, unary;         % always-
                <<  : 5, unary;         % initially
                >   : 5, unary;         % next
                >   : 5, binary, right; % n x next
                >:  : 5, unary;         % weak next
                >:  : 5, binary, right; % n x weak next
                >?  : 5, unary;         % eventually+
                >*  : 5, unary;         % always+
                >>  : 5, unary;         % finally
                >*  : 4, binary, left;  % release
                >?  : 4, binary, left;  % until
                <*  : 4, binary, left;  % trigger
                <?  : 4, binary, left;  % since
                &   : 3, binary, left;  % and
                |   : 2, binary, left;  % or
                <-  : 1, binary, left;  % left implication
                ->  : 1, binary, left;  % right implication
                <>  : 1, binary, left;  % equivalence
                ;>  : 0, binary, right; % sequence next
                ;>: : 0, binary, right; % sequence weak next
                <;  : 0, binary, left;  % sequence previous
                <:; : 0, binary, left   % sequence weak previous
            };
            formula_head  {
                &   : 7, unary;         % prefix for keywords
                -   : 7, unary;         % classical negation
                +   : 6, binary, left;  % arithmetic +
                -   : 6, binary, left;  % arithmetic -
                ~   : 5, unary;         % negation
                >   : 5, unary;         % next
                >   : 5, binary, right; % n x next
                >:  : 5, unary;         % weak next
                >:  : 5, binary, right; % n x weak next
                >?  : 5, unary;         % eventually+
                >*  : 5, unary;         % always+
                >>  : 5, unary;         % finally
                >*  : 4, binary, left;  % release
                >?  : 4, binary, left;  % until
                &   : 3, binary, left;  % and
                |   : 2, binary, left;  % or
                ;>  : 0, binary, right; % sequence next
                ;>: : 0, binary, right  % sequence weak next
            };
            &tel/1 : formula_body, body;
            &__tel_head/1 : formula_body, head
        }.
        '''), no_program)

    _clingo.parse_program(
        _dedent('''\
        #theory del {
            formula_body  {
                &   : 7, unary;         % prefix for keywords
                ?   : 4, unary;         % check
                *   : 3, unary;         % kleene star
                +   : 2, binary, left;  % choice
                ;;  : 1, binary, left;  % sequence
                .>? : 0, binary, right; % diamond (eventually)
                .>* : 0, binary, right  % box (always)
            };
            &del/1 : formula_body, body
        }.
        '''), no_program)

    return future_sigs, reground_parts
Example #5
0
    def __get_param(self, name, arity, location, replace_future, fail_future,
                    fail_past, max_shift):
        """
        Strips previous and next operators from function names
        and returns the updated name plus the time arguments to append.
        Furthermore, if the initially operator (_ prefix) is used, then the
        time parameter is replaced with 0. Otherwise, it is treated like a past
        operator.

        If replace_future is set this also introduces a new name for the
        predicate, which is recorded in the list of atoms that have to be made
        redefinable. In this case the name is prefixed with __future_. Such
        dynamic predicates are recorded in the future_predicates list.

        Arguments:
        name           -- The name of the predicate
                          (trailing primes denote previous operators).
        location       -- Location for generated terms.
        replace_future -- Whether atoms referring to the future have to be
                          replaced by a special future atom.
        fail_future    -- Fail if the atom refers to the future.
        fail_past      -- Fail if the atom refers to the past.
        max_shift      -- The maximum number of steps terms look into the
                          future.

        Example for body atoms:

            p(X) :- 'q(X)

        becomes

            p(X,t) :- q(X,t-1)

        Example for head atoms (replace_future=True):

            p''(X) :- q(X).

        becomes

            __future__p(X,2,t) :- q(X,t).

        and future_predicates is extended with (p,1,2) -> False
        """
        n = name.strip("'")
        shift = 0
        for c in name:
            if c == "'":
                shift -= 1
            else:
                break
        shift += len(name) - len(n) + shift

        initially = False
        if n.startswith("_") and not n.startswith("__"):
            n = n[1:]
            if n.startswith("'") or name.startswith("'") or name.endswith("'"):
                raise RuntimeError(
                    "initially operator cannot be used with primes: {}".format(
                        _tf.str_location(location)))
            initially = True

        finally_ = False
        if n.endswith("_") and not n.endswith("__"):
            n = n[:-1]
            if n.endswith("'") or name.startswith("'") or name.endswith("'"):
                raise RuntimeError(
                    "finally operator cannot be used with primes: {}".format(
                        _tf.str_location(location)))
            finally_ = True
            raise RuntimeError("finally operator not yet supported: {}".format(
                _tf.str_location(location)))

        if initially and finally_:
            raise RuntimeError(
                "finally and initially operator cannot used together: {}".
                format(_tf.str_location(location)))

        params = [
            _ast.Symbol(location, _clingo.Function(_tf.g_time_parameter_name))
        ]
        if fail_future and (shift > 0 or finally_):
            raise RuntimeError(
                "future atoms not supported in this context: {}".format(
                    _tf.str_location(location)))
        if fail_past and (shift < 0 or initially):
            raise RuntimeError(
                "past atoms not supported in this context: {}".format(
                    _tf.str_location(location)))
        if shift > 0:
            if replace_future:
                self.__future_predicates.add(
                    (n, arity, self.__positive, shift))
                n = _tf.g_future_prefix + n
                params.insert(0, _ast.Symbol(location, shift))
            else:
                max_shift[0] = max(max_shift[0], shift)
        if shift != 0:
            params[-1] = _ast.BinaryOperation(location,
                                              _ast.BinaryOperator.Plus,
                                              params[-1],
                                              _ast.Symbol(location, shift))
        elif initially:
            params[-1] = _ast.Symbol(location, 0)
        return (n, params)
Example #6
0
 def visit_BinaryOperation(self, x):
     """
     BinaryOperation(location: Location, operator: BinaryOperator, left: term, right: term)
     """
     return [ast.BinaryOperation(x.location, x.operator, l, r) for l, r in product(self.visit(x.left), self.visit(x.right))]