Example #1
0
    def build_input_node(self):
        """Build and connect an input node to the pipeline."""
        import os
        from os.path import join, exists
        from colorama import Fore
        import nipype.interfaces.utility as nutil
        import nipype.pipeline.engine as npe
        from clinica.utils.inputs import clinica_file_reader, clinica_group_reader
        from clinica.utils.input_files import (
            t1_volume_final_group_template, t1_volume_native_tpm,
            t1_volume_native_tpm_in_mni, t1_volume_deformation_to_template,
            bids_pet_nii, T1W_NII)
        from clinica.utils.exceptions import ClinicaException
        from clinica.utils.ux import print_groups_in_caps_directory, print_images_to_process
        from clinica.iotools.utils.data_handling import check_relative_volume_location_in_world_coordinate_system
        from clinica.utils.filemanip import save_participants_sessions
        from clinica.utils.pet import read_psf_information, get_suvr_mask
        from clinica.utils.stream import cprint

        # Check that group already exists
        if not exists(
                join(self.caps_directory, 'groups',
                     'group-' + self.parameters['group_label'])):
            print_groups_in_caps_directory(self.caps_directory)
            raise ClinicaException(
                '%sGroup %s does not exist. Did you run t1-volume or t1-volume-create-dartel pipeline?%s'
                % (Fore.RED, self.parameters['group_label'], Fore.RESET))

        # Tissues DataGrabber
        # ====================
        all_errors = []

        # Grab reference mask
        reference_mask_file = get_suvr_mask(
            self.parameters['suvr_reference_region'])

        # PET from BIDS directory
        try:
            pet_bids = clinica_file_reader(
                self.subjects, self.sessions, self.bids_directory,
                bids_pet_nii(self.parameters['acq_label']))
        except ClinicaException as e:
            all_errors.append(e)

        # Native T1w-MRI
        try:
            t1w_bids = clinica_file_reader(self.subjects, self.sessions,
                                           self.bids_directory, T1W_NII)
        except ClinicaException as e:
            all_errors.append(e)

        # mask_tissues
        tissues_input = []
        for tissue_number in self.parameters['mask_tissues']:
            try:
                current_file = clinica_file_reader(
                    self.subjects, self.sessions, self.caps_directory,
                    t1_volume_native_tpm_in_mni(tissue_number, False))
                tissues_input.append(current_file)
            except ClinicaException as e:
                all_errors.append(e)
        # Tissues_input has a length of len(self.parameters['mask_tissues']). Each of these elements has a size of
        # len(self.subjects). We want the opposite: a list of size len(self.subjects) whose elements have a size of
        # len(self.parameters['mask_tissues']. The trick is to iter on elements with zip(*my_list)
        tissues_input_final = []
        for subject_tissue_list in zip(*tissues_input):
            tissues_input_final.append(subject_tissue_list)
        tissues_input = tissues_input_final

        # Flowfields
        try:
            flowfields_caps = clinica_file_reader(
                self.subjects, self.sessions, self.caps_directory,
                t1_volume_deformation_to_template(
                    self.parameters['group_label']))
        except ClinicaException as e:
            all_errors.append(e)

        # Dartel Template
        try:
            final_template = clinica_group_reader(
                self.caps_directory,
                t1_volume_final_group_template(self.parameters['group_label']))
        except ClinicaException as e:
            all_errors.append(e)

        if self.parameters['pvc_psf_tsv'] is not None:
            iterables_psf = read_psf_information(
                self.parameters['pvc_psf_tsv'], self.subjects, self.sessions)
            self.parameters['apply_pvc'] = True
        else:
            iterables_psf = [[]] * len(self.subjects)
            self.parameters['apply_pvc'] = False

        if self.parameters['apply_pvc']:
            # pvc tissues input
            pvc_tissues_input = []
            for tissue_number in self.parameters['pvc_mask_tissues']:
                try:
                    current_file = clinica_file_reader(
                        self.subjects, self.sessions, self.caps_directory,
                        t1_volume_native_tpm(tissue_number))
                    pvc_tissues_input.append(current_file)
                except ClinicaException as e:
                    all_errors.append(e)

            if len(all_errors) == 0:
                pvc_tissues_input_final = []
                for subject_tissue_list in zip(*pvc_tissues_input):
                    pvc_tissues_input_final.append(subject_tissue_list)
                pvc_tissues_input = pvc_tissues_input_final
        else:
            pvc_tissues_input = []

        if len(all_errors) > 0:
            error_message = 'Clinica faced error(s) while trying to read files in your CAPS/BIDS directories.\n'
            for msg in all_errors:
                error_message += str(msg)
            raise ClinicaException(error_message)

        check_relative_volume_location_in_world_coordinate_system(
            'T1w-MRI', t1w_bids, self.parameters['acq_label'] + ' PET',
            pet_bids, self.bids_directory, self.parameters['acq_label'])

        # Save subjects to process in <WD>/<Pipeline.name>/participants.tsv
        folder_participants_tsv = os.path.join(self.base_dir, self.name)
        save_participants_sessions(self.subjects, self.sessions,
                                   folder_participants_tsv)

        if len(self.subjects):
            print_images_to_process(self.subjects, self.sessions)
            cprint('List available in %s' %
                   os.path.join(folder_participants_tsv, 'participants.tsv'))
            cprint(
                'The pipeline will last approximately 10 minutes per image.')

        read_input_node = npe.Node(
            name="LoadingCLIArguments",
            interface=nutil.IdentityInterface(fields=self.get_input_fields(),
                                              mandatory_inputs=True),
            iterables=[('pet_image', pet_bids), ('t1_image_native', t1w_bids),
                       ('mask_tissues', tissues_input), ('psf', iterables_psf),
                       ('flow_fields', flowfields_caps),
                       ('pvc_mask_tissues', pvc_tissues_input)],
            synchronize=True)

        read_input_node.inputs.reference_mask = reference_mask_file
        read_input_node.inputs.dartel_template = final_template

        self.connect([(read_input_node, self.input_node,
                       [('pet_image', 'pet_image'),
                        ('t1_image_native', 't1_image_native'),
                        ('mask_tissues', 'mask_tissues'),
                        ('flow_fields', 'flow_fields'),
                        ('dartel_template', 'dartel_template'),
                        ('reference_mask', 'reference_mask'), ('psf', 'psf'),
                        ('pvc_mask_tissues', 'pvc_mask_tissues')])])
    def build_input_node(self):
        """Build and connect an input node to the pipeline."""
        import os
        from os.path import exists, join

        import nipype.interfaces.utility as nutil
        import nipype.pipeline.engine as npe

        from clinica.iotools.utils.data_handling import (
            check_relative_volume_location_in_world_coordinate_system, )
        from clinica.utils.exceptions import ClinicaException
        from clinica.utils.filemanip import save_participants_sessions
        from clinica.utils.input_files import (
            T1W_NII,
            bids_pet_nii,
            t1_volume_deformation_to_template,
            t1_volume_final_group_template,
            t1_volume_native_tpm,
            t1_volume_native_tpm_in_mni,
        )
        from clinica.utils.inputs import clinica_file_reader, clinica_group_reader
        from clinica.utils.pet import get_suvr_mask, read_psf_information
        from clinica.utils.stream import cprint
        from clinica.utils.ux import (
            print_groups_in_caps_directory,
            print_images_to_process,
        )

        # Check that group already exists
        if not exists(
                join(self.caps_directory, "groups",
                     f"group-{self.parameters['group_label']}")):
            print_groups_in_caps_directory(self.caps_directory)
            raise ClinicaException(
                f"Group {self.parameters['group_label']} does not exist. "
                "Did you run t1-volume or t1-volume-create-dartel pipeline?")

        # Tissues DataGrabber
        # ====================
        all_errors = []

        # Grab reference mask
        reference_mask_file = get_suvr_mask(
            self.parameters["suvr_reference_region"])

        # PET from BIDS directory
        try:
            pet_bids = clinica_file_reader(
                self.subjects,
                self.sessions,
                self.bids_directory,
                bids_pet_nii(self.parameters["acq_label"]),
            )
        except ClinicaException as e:
            all_errors.append(e)

        # Native T1w-MRI
        try:
            t1w_bids = clinica_file_reader(self.subjects, self.sessions,
                                           self.bids_directory, T1W_NII)
        except ClinicaException as e:
            all_errors.append(e)

        # mask_tissues
        tissues_input = []
        for tissue_number in self.parameters["mask_tissues"]:
            try:
                current_file = clinica_file_reader(
                    self.subjects,
                    self.sessions,
                    self.caps_directory,
                    t1_volume_native_tpm_in_mni(tissue_number, False),
                )
                tissues_input.append(current_file)
            except ClinicaException as e:
                all_errors.append(e)
        # Tissues_input has a length of len(self.parameters['mask_tissues']). Each of these elements has a size of
        # len(self.subjects). We want the opposite: a list of size len(self.subjects) whose elements have a size of
        # len(self.parameters['mask_tissues']. The trick is to iter on elements with zip(*my_list)
        tissues_input_final = []
        for subject_tissue_list in zip(*tissues_input):
            tissues_input_final.append(subject_tissue_list)
        tissues_input = tissues_input_final

        # Flowfields
        try:
            flowfields_caps = clinica_file_reader(
                self.subjects,
                self.sessions,
                self.caps_directory,
                t1_volume_deformation_to_template(
                    self.parameters["group_label"]),
            )
        except ClinicaException as e:
            all_errors.append(e)

        # Dartel Template
        try:
            final_template = clinica_group_reader(
                self.caps_directory,
                t1_volume_final_group_template(self.parameters["group_label"]),
            )
        except ClinicaException as e:
            all_errors.append(e)

        if self.parameters["pvc_psf_tsv"] is not None:
            iterables_psf = read_psf_information(
                self.parameters["pvc_psf_tsv"],
                self.subjects,
                self.sessions,
                self.parameters["acq_label"],
            )
            self.parameters["apply_pvc"] = True
        else:
            iterables_psf = [[]] * len(self.subjects)
            self.parameters["apply_pvc"] = False

        if self.parameters["apply_pvc"]:
            # pvc tissues input
            pvc_tissues_input = []
            for tissue_number in self.parameters["pvc_mask_tissues"]:
                try:
                    current_file = clinica_file_reader(
                        self.subjects,
                        self.sessions,
                        self.caps_directory,
                        t1_volume_native_tpm(tissue_number),
                    )
                    pvc_tissues_input.append(current_file)
                except ClinicaException as e:
                    all_errors.append(e)

            if len(all_errors) == 0:
                pvc_tissues_input_final = []
                for subject_tissue_list in zip(*pvc_tissues_input):
                    pvc_tissues_input_final.append(subject_tissue_list)
                pvc_tissues_input = pvc_tissues_input_final
        else:
            pvc_tissues_input = []

        if len(all_errors) > 0:
            error_message = "Clinica faced error(s) while trying to read files in your CAPS/BIDS directories.\n"
            for msg in all_errors:
                error_message += str(msg)
            raise ClinicaException(error_message)

        check_relative_volume_location_in_world_coordinate_system(
            "T1w-MRI",
            t1w_bids,
            self.parameters["acq_label"] + " PET",
            pet_bids,
            self.bids_directory,
            self.parameters["acq_label"],
            skip_question=self.parameters["skip_question"],
        )

        # Save subjects to process in <WD>/<Pipeline.name>/participants.tsv
        folder_participants_tsv = os.path.join(self.base_dir, self.name)
        save_participants_sessions(self.subjects, self.sessions,
                                   folder_participants_tsv)

        if len(self.subjects):
            print_images_to_process(self.subjects, self.sessions)
            cprint("List available in %s" %
                   os.path.join(folder_participants_tsv, "participants.tsv"))
            cprint(
                "The pipeline will last approximately 10 minutes per image.")

        read_input_node = npe.Node(
            name="LoadingCLIArguments",
            interface=nutil.IdentityInterface(fields=self.get_input_fields(),
                                              mandatory_inputs=True),
            iterables=[
                ("pet_image", pet_bids),
                ("t1_image_native", t1w_bids),
                ("mask_tissues", tissues_input),
                ("psf", iterables_psf),
                ("flow_fields", flowfields_caps),
                ("pvc_mask_tissues", pvc_tissues_input),
            ],
            synchronize=True,
        )

        read_input_node.inputs.reference_mask = reference_mask_file
        read_input_node.inputs.dartel_template = final_template

        # fmt: off
        self.connect([(read_input_node, self.input_node,
                       [("pet_image", "pet_image"),
                        ("t1_image_native", "t1_image_native"),
                        ("mask_tissues", "mask_tissues"),
                        ("flow_fields", "flow_fields"),
                        ("dartel_template", "dartel_template"),
                        ("reference_mask", "reference_mask"), ("psf", "psf"),
                        ("pvc_mask_tissues", "pvc_mask_tissues")])])
    def build_input_node(self):
        """Build and connect an input node to the pipeline."""
        import os
        from colorama import Fore
        import nipype.pipeline.engine as npe
        import nipype.interfaces.utility as nutil
        from clinica.utils.inputs import clinica_file_reader, clinica_group_reader
        from clinica.utils.input_files import (
            t1_volume_final_group_template, t1_volume_native_tpm,
            t1_volume_deformation_to_template)
        from clinica.utils.exceptions import ClinicaCAPSError, ClinicaException
        from clinica.utils.stream import cprint
        from clinica.utils.ux import print_groups_in_caps_directory, print_images_to_process

        # Check that group already exists
        if not os.path.exists(
                os.path.join(self.caps_directory, 'groups',
                             'group-' + self.parameters['group_id'])):
            print_groups_in_caps_directory(self.caps_directory)
            raise ClinicaException(
                '%sGroup %s does not exist. Did you run t1-volume or t1-volume-create-dartel pipeline?%s'
                % (Fore.RED, self.parameters['group_id'], Fore.RESET))

        all_errors = []
        read_input_node = npe.Node(name="LoadingCLIArguments",
                                   interface=nutil.IdentityInterface(
                                       fields=self.get_input_fields(),
                                       mandatory_inputs=True))

        # Segmented Tissues
        # =================
        tissues_input = []
        for tissue_number in self.parameters['tissues']:
            try:
                native_space_tpm = clinica_file_reader(
                    self.subjects, self.sessions, self.caps_directory,
                    t1_volume_native_tpm(tissue_number))
                tissues_input.append(native_space_tpm)
            except ClinicaException as e:
                all_errors.append(e)
        # Tissues_input has a length of len(self.parameters['mask_tissues']). Each of these elements has a size of
        # len(self.subjects). We want the opposite : a list of size len(self.subjects) whose elements have a size of
        # len(self.parameters['mask_tissues']. The trick is to iter on elements with zip(*my_list)
        tissues_input_rearranged = []
        for subject_tissue_list in zip(*tissues_input):
            tissues_input_rearranged.append(subject_tissue_list)

        read_input_node.inputs.native_segmentations = tissues_input_rearranged

        # Flow Fields
        # ===========
        try:
            read_input_node.inputs.flowfield_files = clinica_file_reader(
                self.subjects, self.sessions, self.caps_directory,
                t1_volume_deformation_to_template(self.parameters['group_id']))
        except ClinicaException as e:
            all_errors.append(e)

        # Dartel Template
        # ================
        try:
            read_input_node.inputs.template_file = clinica_group_reader(
                self.caps_directory,
                t1_volume_final_group_template(self.parameters['group_id']))
        except ClinicaException as e:
            all_errors.append(e)

        if len(all_errors) > 0:
            error_message = 'Clinica faced error(s) while trying to read files in your CAPS/BIDS directories.\n'
            for msg in all_errors:
                error_message += str(msg)
            raise ClinicaCAPSError(error_message)

        if len(self.subjects):
            print_images_to_process(self.subjects, self.sessions)
            cprint('The pipeline will last a few minutes per image.')

        self.connect([(read_input_node, self.input_node,
                       [('native_segmentations', 'native_segmentations')]),
                      (read_input_node, self.input_node,
                       [('flowfield_files', 'flowfield_files')]),
                      (read_input_node, self.input_node, [('template_file',
                                                           'template_file')])])
    def build_input_node(self):
        """Build and connect an input node to the pipeline."""
        import os
        from colorama import Fore
        import nipype.pipeline.engine as npe
        import nipype.interfaces.utility as nutil
        from clinica.utils.inputs import clinica_file_reader, clinica_group_reader
        from clinica.utils.input_files import (t1_volume_final_group_template,
                                               pet_volume_normalized_suvr_pet)
        from clinica.utils.exceptions import ClinicaCAPSError, ClinicaException
        from clinica.utils.ux import print_groups_in_caps_directory

        # Check that group already exists
        if not os.path.exists(
                os.path.join(self.caps_directory, 'groups',
                             'group-' + self.parameters['group_label'])):
            print_groups_in_caps_directory(self.caps_directory)
            raise ClinicaException(
                '%sGroup %s does not exist. Did you run pet-volume, t1-volume or t1-volume-create-dartel pipeline?%s'
                % (Fore.RED, self.parameters['group_label'], Fore.RESET))

        read_parameters_node = npe.Node(name="LoadingCLIArguments",
                                        interface=nutil.IdentityInterface(
                                            fields=self.get_input_fields(),
                                            mandatory_inputs=True))
        all_errors = []

        if self.parameters['orig_input_data'] == 't1-volume':
            caps_files_information = {
                'pattern':
                os.path.join(
                    't1', 'spm', 'dartel',
                    'group-' + self.parameters['group_label'],
                    '*_T1w_segm-graymatter_space-Ixi549Space_modulated-on_probability.nii.gz'
                ),
                'description':
                'graymatter tissue segmented in T1w MRI in Ixi549 space',
                'needed_pipeline':
                't1-volume-tissue-segmentation'
            }
        elif self.parameters['orig_input_data'] == 'pet-volume':
            if not (self.parameters["acq_label"]
                    and self.parameters["suvr_reference_region"]):
                raise ValueError(
                    f"Missing value(s) in parameters from pet-volume pipeline. Given values:\n"
                    f"- acq_label: {self.parameters['acq_label']}\n"
                    f"- suvr_reference_region: {self.parameters['suvr_reference_region']}\n"
                    f"- use_pvc_data: {self.parameters['use_pvc_data']}\n")
            caps_files_information = pet_volume_normalized_suvr_pet(
                acq_label=self.parameters["acq_label"],
                suvr_reference_region=self.parameters["suvr_reference_region"],
                use_brainmasked_image=False,
                use_pvc_data=self.parameters["use_pvc_data"],
                fwhm=0)
        else:
            raise ValueError(
                f"Image type {self.parameters['orig_input_data']} unknown.")

        try:
            input_image = clinica_file_reader(self.subjects, self.sessions,
                                              self.caps_directory,
                                              caps_files_information)
        except ClinicaException as e:
            all_errors.append(e)

        try:
            dartel_input = clinica_group_reader(
                self.caps_directory,
                t1_volume_final_group_template(self.parameters['group_label']))
        except ClinicaException as e:
            all_errors.append(e)

        # Raise all errors if some happened
        if len(all_errors) > 0:
            error_message = 'Clinica faced errors while trying to read files in your CAPS directories.\n'
            for msg in all_errors:
                error_message += str(msg)
            raise ClinicaCAPSError(error_message)

        read_parameters_node.inputs.dartel_input = dartel_input
        read_parameters_node.inputs.input_image = input_image

        self.connect([(read_parameters_node, self.input_node,
                       [('dartel_input', 'dartel_input')]),
                      (read_parameters_node, self.input_node,
                       [('input_image', 'input_image')])])
Example #5
0
    def build_input_node(self):
        """Build and connect an input node to the pipelines.
        """
        from colorama import Fore
        from os.path import join, split, realpath, exists
        import nipype.interfaces.utility as nutil
        import nipype.pipeline.engine as npe
        from .pet_volume_utils import read_psf_information
        from clinica.utils.inputs import clinica_file_reader, clinica_group_reader, insensitive_glob
        from clinica.utils.input_files import (t1_volume_final_group_template,
                                               t1_volume_native_tpm,
                                               t1_volume_native_tpm_in_mni,
                                               t1_volume_deformation_to_template)
        from clinica.utils.exceptions import ClinicaException
        from clinica.utils.ux import print_groups_in_caps_directory
        from clinica.iotools.utils.data_handling import check_relative_volume_location_in_world_coordinate_system
        import clinica.utils.input_files as input_files

        # Check that group already exists
        if not exists(join(self.caps_directory, 'groups', 'group-' + self.parameters['group_id'])):
            print_groups_in_caps_directory(self.caps_directory)
            raise ClinicaException(
                '%sGroup %s does not exist. Did you run t1-volume or t1-volume-create-dartel pipeline?%s' %
                (Fore.RED, self.parameters['group_id'], Fore.RESET)
            )

        # Tissues DataGrabber
        # ====================
        all_errors = []

        # Grab reference mask
        if self.parameters['pet_tracer'] == 'fdg':
            reference_mask_template = 'region-pons_eroded-6mm_mask.nii*'
            self.parameters['suvr_region'] = 'pons'
            pet_file_to_grab = input_files.PET_FDG_NII
        elif self.parameters['pet_tracer'] == 'av45':
            reference_mask_template = 'region-cerebellumPons_eroded-6mm_mask.nii*'
            self.parameters['suvr_region'] = 'cerebellumPons'
            pet_file_to_grab = input_files.PET_AV45_NII
        else:
            raise NotImplementedError('Only "fdg" or "av45" tracers are currently accepted (given tracer "%s").' %
                                      self.parameters['pet_tracer'])
        reference_mask_path = join(split(realpath(__file__))[0], '../../resources/masks', reference_mask_template)
        reference_mask_file = insensitive_glob(reference_mask_path)
        if len(reference_mask_file) != 1:
            all_errors.append('An error happened while trying to get reference mask ' + str(reference_mask_path))
        else:
            reference_mask_file = reference_mask_file[0]

        # PET from BIDS directory
        try:
            pet_bids = clinica_file_reader(self.subjects,
                                           self.sessions,
                                           self.bids_directory,
                                           pet_file_to_grab)
        except ClinicaException as e:
            all_errors.append(e)

        # Native T1w-MRI
        try:
            t1w_bids = clinica_file_reader(self.subjects,
                                           self.sessions,
                                           self.bids_directory,
                                           input_files.T1W_NII)
        except ClinicaException as e:
            all_errors.append(e)

        # mask_tissues
        tissues_input = []
        for tissue_number in self.parameters['mask_tissues']:
            try:
                current_file = clinica_file_reader(self.subjects,
                                                   self.sessions,
                                                   self.caps_directory,
                                                   t1_volume_native_tpm_in_mni(tissue_number, False))
                tissues_input.append(current_file)
            except ClinicaException as e:
                all_errors.append(e)
        # Tissues_input has a length of len(self.parameters['mask_tissues']). Each of these elements has a size of
        # len(self.subjects). We want the opposite: a list of size len(self.subjects) whose elements have a size of
        # len(self.parameters['mask_tissues']. The trick is to iter on elements with zip(*my_list)
        tissues_input_final = []
        for subject_tissue_list in zip(*tissues_input):
            tissues_input_final.append(subject_tissue_list)
        tissues_input = tissues_input_final

        # Flowfields
        try:
            flowfields_caps = clinica_file_reader(self.subjects,
                                                  self.sessions,
                                                  self.caps_directory,
                                                  t1_volume_deformation_to_template(self.parameters['group_id']))
        except ClinicaException as e:
            all_errors.append(e)

        # Dartel Template
        try:
            final_template = clinica_group_reader(self.caps_directory,
                                                  t1_volume_final_group_template(self.parameters['group_id']))
        except ClinicaException as e:
            all_errors.append(e)

        if self.parameters['psf_tsv'] is not None:
            iterables_fwhm = read_psf_information(self.parameters['psf_tsv'], self.subjects, self.sessions)
            self.parameters['apply_pvc'] = True
        else:
            iterables_fwhm = [[]] * len(self.subjects)
            self.parameters['apply_pvc'] = False

        if self.parameters['apply_pvc']:
            # pvc tissues input
            pvc_tissues_input = []
            for tissue_number in self.parameters['pvc_mask_tissues']:
                try:
                    current_file = clinica_file_reader(self.subjects,
                                                       self.sessions,
                                                       self.caps_directory,
                                                       t1_volume_native_tpm(tissue_number))
                    pvc_tissues_input.append(current_file)
                except ClinicaException as e:
                    all_errors.append(e)

            if len(all_errors) == 0:
                pvc_tissues_input_final = []
                for subject_tissue_list in zip(*pvc_tissues_input):
                    pvc_tissues_input_final.append(subject_tissue_list)
                pvc_tissues_input = pvc_tissues_input_final
        else:
            pvc_tissues_input = []

        if len(all_errors) > 0:
            error_message = 'Clinica faced error(s) while trying to read files in your CAPS/BIDS directories.\n'
            for msg in all_errors:
                error_message += str(msg)
            raise ClinicaException(error_message)

        check_relative_volume_location_in_world_coordinate_system('T1w-MRI', t1w_bids,
                                                                  self.parameters['pet_tracer'] + ' PET', pet_bids,
                                                                  self.bids_directory,
                                                                  self.parameters['pet_tracer'])

        read_input_node = npe.Node(name="LoadingCLIArguments",
                                   interface=nutil.IdentityInterface(
                                       fields=self.get_input_fields(),
                                       mandatory_inputs=True),
                                   iterables=[('pet_image', pet_bids),
                                              ('t1_image_native', t1w_bids),
                                              ('mask_tissues', tissues_input),
                                              ('fwhm', iterables_fwhm),
                                              ('flow_fields', flowfields_caps),
                                              ('pvc_mask_tissues', pvc_tissues_input)],
                                   synchronize=True)

        read_input_node.inputs.reference_mask = reference_mask_file
        read_input_node.inputs.dartel_template = final_template

        self.connect([(read_input_node, self.input_node, [('pet_image', 'pet_image')]),
                      (read_input_node, self.input_node, [('t1_image_native', 't1_image_native')]),
                      (read_input_node, self.input_node, [('mask_tissues', 'mask_tissues')]),
                      (read_input_node, self.input_node, [('flow_fields', 'flow_fields')]),
                      (read_input_node, self.input_node, [('dartel_template', 'dartel_template')]),
                      (read_input_node, self.input_node, [('reference_mask', 'reference_mask')]),
                      (read_input_node, self.input_node, [('fwhm', 'fwhm')]),
                      (read_input_node, self.input_node, [('pvc_mask_tissues', 'pvc_mask_tissues')])])
    def build_input_node(self):
        """Build and connect an input node to the pipeline."""
        import os

        import nipype.interfaces.utility as nutil
        import nipype.pipeline.engine as npe

        from clinica.utils.exceptions import ClinicaCAPSError, ClinicaException
        from clinica.utils.input_files import (
            pet_volume_normalized_suvr_pet,
            t1_volume_final_group_template,
        )
        from clinica.utils.inputs import clinica_file_reader, clinica_group_reader
        from clinica.utils.ux import print_groups_in_caps_directory

        # Check that group already exists
        if not os.path.exists(
            os.path.join(
                self.caps_directory, "groups", "group-" + self.parameters["group_label"]
            )
        ):
            print_groups_in_caps_directory(self.caps_directory)
            raise ClinicaException(
                f"Group {self.parameters['group_label']} does not exist. "
                "Did you run pet-volume, t1-volume or t1-volume-create-dartel pipeline?"
            )

        read_parameters_node = npe.Node(
            name="LoadingCLIArguments",
            interface=nutil.IdentityInterface(
                fields=self.get_input_fields(), mandatory_inputs=True
            ),
        )
        all_errors = []

        if self.parameters["orig_input_data"] == "t1-volume":
            caps_files_information = {
                "pattern": os.path.join(
                    "t1",
                    "spm",
                    "dartel",
                    "group-" + self.parameters["group_label"],
                    "*_T1w_segm-graymatter_space-Ixi549Space_modulated-on_probability.nii.gz",
                ),
                "description": "graymatter tissue segmented in T1w MRI in Ixi549 space",
                "needed_pipeline": "t1-volume-tissue-segmentation",
            }
        elif self.parameters["orig_input_data"] == "pet-volume":
            if not (
                self.parameters["acq_label"]
                and self.parameters["suvr_reference_region"]
            ):
                raise ValueError(
                    f"Missing value(s) in parameters from pet-volume pipeline. Given values:\n"
                    f"- acq_label: {self.parameters['acq_label']}\n"
                    f"- suvr_reference_region: {self.parameters['suvr_reference_region']}\n"
                    f"- use_pvc_data: {self.parameters['use_pvc_data']}\n"
                )
            caps_files_information = pet_volume_normalized_suvr_pet(
                acq_label=self.parameters["acq_label"],
                suvr_reference_region=self.parameters["suvr_reference_region"],
                use_brainmasked_image=False,
                use_pvc_data=self.parameters["use_pvc_data"],
                fwhm=0,
            )
        else:
            raise ValueError(
                f"Image type {self.parameters['orig_input_data']} unknown."
            )

        try:
            input_image = clinica_file_reader(
                self.subjects,
                self.sessions,
                self.caps_directory,
                caps_files_information,
            )
        except ClinicaException as e:
            all_errors.append(e)

        try:
            dartel_input = clinica_group_reader(
                self.caps_directory,
                t1_volume_final_group_template(self.parameters["group_label"]),
            )
        except ClinicaException as e:
            all_errors.append(e)

        # Raise all errors if some happened
        if len(all_errors) > 0:
            error_message = "Clinica faced errors while trying to read files in your CAPS directories.\n"
            for msg in all_errors:
                error_message += str(msg)
            raise ClinicaCAPSError(error_message)

        read_parameters_node.inputs.dartel_input = dartel_input
        read_parameters_node.inputs.input_image = input_image

        # fmt: off
        self.connect(
            [
                (read_parameters_node, self.input_node, [("dartel_input", "dartel_input")]),
                (read_parameters_node, self.input_node, [("input_image", "input_image")]),
            ]
        )
Example #7
0
    def build_input_node(self):
        """Build and connect an input node to the pipeline.
        """
        import os
        from colorama import Fore
        import nipype.pipeline.engine as npe
        import nipype.interfaces.utility as nutil
        from clinica.utils.inputs import clinica_file_reader, clinica_group_reader
        from clinica.utils.input_files import t1_volume_final_group_template
        from clinica.utils.exceptions import ClinicaCAPSError, ClinicaException
        from clinica.utils.ux import print_groups_in_caps_directory

        # Check that group already exists
        if not os.path.exists(os.path.join(self.caps_directory, 'groups', 'group-' + self.parameters['group_id'])):
            print_groups_in_caps_directory(self.caps_directory)
            raise ClinicaException(
                '%sGroup %s does not exist. Did you run pet-volume, t1-volume or t1-volume-create-dartel pipeline?%s' %
                (Fore.RED, self.parameters['group_id'], Fore.RESET)
            )

        read_parameters_node = npe.Node(name="LoadingCLIArguments",
                                        interface=nutil.IdentityInterface(fields=self.get_input_fields(),
                                                                          mandatory_inputs=True))
        all_errors = []

        if self.parameters['image_type'] == 't1':
            caps_files_information = {
                'pattern': os.path.join('t1', 'spm', 'dartel', 'group-' + self.parameters['group_id'],
                                        '*_T1w_segm-graymatter_space-Ixi549Space_modulated-on_probability.nii.gz'),
                'description': 'graymatter tissue segmented in T1w MRI in Ixi549 space',
                'needed_pipeline': 't1-volume-tissue-segmentation'
            }
        elif self.parameters['image_type'] is 'pet':
            if self.parameters['no_pvc']:
                caps_files_information = {
                    'pattern': os.path.join('pet', 'preprocessing', 'group-' + self.parameters['group_id'],
                                            '*_pet_space-Ixi549Space_suvr-pons_pet.nii.gz'),
                    'description': self.parameters['pet_tracer'] + ' PET in Ixi549 space',
                    'needed_pipeline': 'pet-volume'
                }
            else:
                caps_files_information = {
                    'pattern': os.path.join('pet', 'preprocessing', 'group-' + self.parameters['group_id'],
                                            '*_pet_space-Ixi549Space_pvc-rbv_suvr-pons_pet.nii.gz'),
                    'description': self.parameters['pet_tracer'] + ' PET partial volume corrected (RBV) in Ixi549 space',
                    'needed_pipeline': 'pet-volume with PVC'
                }
        else:
            raise ValueError('Image type ' + self.parameters['image_type'] + ' unknown.')

        try:
            input_image = clinica_file_reader(self.subjects,
                                              self.sessions,
                                              self.caps_directory,
                                              caps_files_information)
        except ClinicaException as e:
            all_errors.append(e)

        try:
            dartel_input = clinica_group_reader(self.caps_directory,
                                                t1_volume_final_group_template(self.parameters['group_id']))
        except ClinicaException as e:
            all_errors.append(e)

        # Raise all errors if some happened
        if len(all_errors) > 0:
            error_message = 'Clinica faced errors while trying to read files in your CAPS directories.\n'
            for msg in all_errors:
                error_message += str(msg)
            raise ClinicaCAPSError(error_message)

        read_parameters_node.inputs.dartel_input = dartel_input
        read_parameters_node.inputs.input_image = input_image

        self.connect([
            (read_parameters_node,      self.input_node,    [('dartel_input',    'dartel_input')]),
            (read_parameters_node,      self.input_node,    [('input_image',    'input_image')])

        ])