def read_xmap(mapin=''): log_string = '\n >> clipper_tools: io.maps.read_xmap' log_string += '\n mapin: %s' % mapin xml_root = etree.Element('input_file') if mapin is not '': map_file = clipper.CCP4MAPfile() map_file.open_read(mapin) map_data = clipper.Xmap_double() map_file.import_xmap_double(map_data) map_file.close_read() log_string += '\n << read_xmap has finished\n' xml_root.attrib['name'] = mapin xml_root.attrib['type'] = 'xmap' xml_root.attrib['ok'] = 'yes' return log_string, xml_root, map_data
def read_xmap(mapin=""): log_string = "\n >> clipper_tools: io.maps.read_xmap" log_string += "\n mapin: %s" % mapin xml_root = etree.Element('input_file') if mapin is not "": map_file = clipper.CCP4MAPfile() map_file.open_read(mapin) map_data = clipper.Xmap_double() map_file.import_xmap_double(map_data) map_file.close_read() log_string += "\n << read_xmap has finished\n" xml_root.attrib['name'] = mapin xml_root.attrib['type'] = "xmap" xml_root.attrib['ok'] = "yes" return log_string, xml_root, map_data
def prepare_map(mapin='', resol=8.0, callback=_callbacks.interactive_flush): """Reads EM map, sets origin to 0, pads cell and computes finely-sampled structure factors Parameters: mapin -- a string path to a map that will be read into a clipper.NXmap_float object resol -- estimated resolution (float) callback -- a function that takes care of log string and xml flushing Returns: a plain text log string, an XML etree and a clipper.HKL_data_F_phi_float object""" def determine_extent(numpy_in, tolerance): """Reads numpy array, determines the extent of the electron density Parameters: numpy_in -- a numpy array containing grid points tolerance -- number of points in a plane with value greater than 1 sigma Returns: a vector of grid indices: (min_u, max_u, min_v, max_v, min_w, max_w)""" log_string = '' min = clipper.Coord_orth() max = clipper.Coord_orth() map_mean = numpy.mean(map_numpy) map_std = numpy.std(map_numpy) mask = map_numpy > map_mean + map_std sum_u = sum(sum(mask)) sum_w = sum(sum(numpy.transpose(mask))) sum_v = sum(numpy.transpose(sum(mask))) log_string += '\n >> dumping 1D summaries of the map\'s content:\n\n >> U:\n %s\n' % sum_u log_string += '\n >> V:\n %s\n' % sum_v log_string += '\n >> W:\n %s\n' % sum_w point_list = [] for idx_u, val_u in enumerate(sum_u): if val_u > tolerance: point_list.append(idx_u) min_u = point_list[0] max_u = point_list[-1] log_string += '\n >> First meaningful U: %i ; Last meaningful U: %i' % ( min_u, max_u) point_list = [] for idx_v, val_v in enumerate(sum_v): if val_v > tolerance: point_list.append(idx_v) min_v = point_list[0] max_v = point_list[-1] log_string += '\n >> First meaningful V: %i ; Last meaningful V: %i' % ( min_v, max_v) point_list = [] for idx_w, val_w in enumerate(sum_w): if val_w > tolerance: point_list.append(idx_w) min_w = point_list[0] max_w = point_list[-1] log_string += '\n >> First meaningful W: %i ; Last meaningful W: %i\n' % ( min_w, max_w) extent = [min_u, max_u, min_v, max_v, min_w, max_w] return extent, log_string ################# end determine_extent ################ ############### main function ################ # create log string so console-based apps get some feedback log_string = '\n >> clipper_tools: mr_from_em.prepare_map' log_string += '\n mapin: %s' % mapin log_string += '\n resol: %s' % resol # create XML tree, to be merged in a global structured results file xml_root = etree.Element('structure_factors') xml_root.attrib['mapin'] = mapin xml_root.attrib['resol'] = str(resol) callback(log_string, xml_root) phaser_params = {} nxmap = clipper.NXmap_double() xmap = clipper.Xmap_double() map_file = clipper.CCP4MAPfile() sg = clipper.Spacegroup.p1() resol *= 0.9 resolution = clipper.Resolution(resol) # nothing in, nothing out if mapin == '': return log_string, xml_root, None # read the cryoEM map into nxmap, get map data irrespective of origin map_file.open_read(mapin) map_file.import_nxmap_double(nxmap) map_file.close_read() log_string += '\n >> file %s has been read as nxmap' % mapin callback(log_string, xml_root) # read the cryoEM map into xmap to get cell dimensions, etc. map_file.open_read(mapin) map_file.import_xmap_double(xmap) map_file.close_read() log_string += '\n >> file %s has been read as xmap' % mapin callback(log_string, xml_root) log_string += '\n >> cell parameters: %s' % xmap.cell().format() log_string += '\n original translation: %s' % nxmap.operator_orth_grid( ).trn() # put map content in a numpy data structure map_numpy = numpy.zeros( (nxmap.grid().nu(), nxmap.grid().nv(), nxmap.grid().nw()), dtype='double') log_string += '\n >> exporting a numpy array of %i x %i x %i grid points' \ % (nxmap.grid().nu(), nxmap.grid().nv(), nxmap.grid().nw()) callback(log_string, xml_root) data_points = nxmap.export_numpy(map_numpy) log_string += '\n >> %i data points have been exported' % data_points callback(log_string, xml_root) map_mean = numpy.mean(map_numpy) map_stdv = numpy.std(map_numpy) log_string += '\n >> map mean (stdev): %.4f (%.4f)' % (map_mean, map_stdv) # compute the extent extent, temp_log = determine_extent(map_numpy, 30) log_string += temp_log extent_list = [ extent[1] - extent[0], extent[3] - extent[2], extent[5] - extent[4] ] max_extent = max(extent_list) # create padded xmap and import numpy array origin_trans = clipper.vec3_double( extent[0] + ((extent[1] - extent[0]) / 2), extent[2] + ((extent[3] - extent[2]) / 2), extent[4] + ((extent[5] - extent[4]) / 2)) large_a = (xmap.cell().a() * (max_extent + xmap.grid_asu().nu())) / xmap.grid_asu().nu() large_b = (xmap.cell().b() * (max_extent + xmap.grid_asu().nv())) / xmap.grid_asu().nv() large_c = (xmap.cell().c() * (max_extent + xmap.grid_asu().nw())) / xmap.grid_asu().nw() cell_desc = clipper.Cell_descr(large_a, large_b, large_c, \ xmap.cell().alpha(), xmap.cell().beta(), xmap.cell().gamma()) large_p1_cell = clipper.Cell(cell_desc) large_grid_sampling = clipper.Grid_sampling( max_extent + xmap.grid_asu().nu(), max_extent + xmap.grid_asu().nv(), max_extent + xmap.grid_asu().nw()) large_xmap = clipper.Xmap_double(sg, large_p1_cell, large_grid_sampling) log_string += '\n >> new grid: nu=%i nv=%i nw=%i' % (large_xmap.grid_asu( ).nu(), large_xmap.grid_asu().nv(), large_xmap.grid_asu().nw()) log_string += '\n >> putting map into a large p1 cell...' log_string += '\n >> new cell parameters: %s' % large_p1_cell.format() callback(log_string, xml_root) large_xmap.import_numpy(map_numpy) # dump map to disk map_file = clipper.CCP4MAPfile() map_file.open_write('mapout_padded.mrc') map_file.export_xmap_double(large_xmap) map_file.close_write() log_string += '\n >> map file mapout_padded.mrc written to disk' callback(log_string, xml_root) # import it back to nxmap so we can trivially shift the origin map_file.open_read('mapout_padded.mrc') map_file.import_nxmap_double(nxmap) map_file.close_read() log_string += '\n >> file mapout_padded.mrc has been read back as nxmap' callback(log_string, xml_root) # now shift the origin rtop_zero = clipper.RTop_double(nxmap.operator_orth_grid().rot(), origin_trans) log_string += '\n >> moving origin...' log_string += '\n original translation: %s new origin: %s' % ( nxmap.operator_orth_grid().trn(), rtop_zero.trn()) callback(log_string, xml_root) nxmap_zero = clipper.NXmap_double(nxmap.grid(), rtop_zero) nxmap_zero.import_numpy(map_numpy) # dump map to disk map_file.open_write('mapout_padded_zero.mrc') map_file.export_nxmap_double(nxmap_zero) map_file.close_write() log_string += '\n >> map file mapout_padded_zero.mrc written to disk' callback(log_string, xml_root) # read it back to an xmap so we can fft-it new_xmap = clipper.Xmap_double() map_file.open_read('mapout_padded_zero.mrc') map_file.import_xmap_double(new_xmap) map_file.close_read() log_string += '\n >> map file mapout_padded_zero.mrc read back as xmap' callback(log_string, xml_root) # create HKL_info using user-supplied resolution parameter hkl_info = clipper.HKL_info(sg, large_p1_cell, resolution, True) # fft the map f_phi = clipper.HKL_data_F_phi_float(hkl_info, large_p1_cell) log_string += '\n >> now computing map coefficients to %0.1f A resolution...' % resol callback(log_string, xml_root) new_xmap.fft_to(f_phi) log_string += '\n >> writing map coefficients to MTZ file mapout_padded_zero.mtz' callback(log_string, xml_root) # setup an MTZ file so we can export our map coefficients mtzout = clipper.CCP4MTZfile() mtzout.open_write('mapout_padded_zero.mtz') mtzout.export_hkl_info(f_phi.hkl_info()) mtzout.export_hkl_data(f_phi, '*/*/[F, PHI]') mtzout.close_write() log_string += '\n >> all done' callback(log_string, xml_root) return log_string, xml_root, f_phi, phaser_params
def cut_by_model(mapin="", pdbin="", ipradius=1.5, ipresol=8.0, ipbfact=0.0, callback=callbacks.interactive_flush): xmap = clipper.Xmap_double() sg = clipper.Spacegroup.p1() resolution = clipper.Resolution(ipresol) # create log string so console-based apps get some feedback log_string = "\n >> clipper_tools: em.cut_density.cut_by_model" log_string += "\n mapin: %s" % mapin log_string += "\n pdbin: %s" % pdbin log_string += "\n bfact: %s" % ipbfact log_string += "\n resol: %s" % ipresol log_string += "\n radius: %s" % ipradius # create XML tree, to be merged in a global structured results file xml_root = etree.Element('program') xml_root.attrib['name'] = 'cut_by_model' xml_root.attrib['user'] = getpass.getuser() xml_root.attrib['date'] = time.strftime("%c") params = etree.SubElement(xml_root, 'parameters') params.attrib['mapin'] = mapin params.attrib['pdbin'] = pdbin params.attrib['b_factor'] = str(ipbfact) params.attrib['resolution'] = str(ipresol) params.attrib['mask_radius'] = str(ipradius) callback(log_string, xml_root) # nothing in, nothing out if mapin == "" or pdbin == "": return log_string, xml_root, None # read the input atomic model from clipper_tools.io.molecules import read_pdb log_string_sub, xml_sub, mmol = read_pdb(pdbin) log_string += log_string_sub xml_root.append(xml_sub) callback(log_string, xml_root) # read the cryoEM map into xmap to get cell dimensions, etc. from clipper_tools.io.maps import read_xmap log_sub, xml_sub, xmap = read_xmap(mapin) log_string += log_sub xml_root.append(xml_sub) callback(log_string, xml_root) grid_sampling = clipper.Grid_sampling(xmap.grid_asu().nu(), xmap.grid_asu().nv(), xmap.grid_asu().nw()) log_string += "\n >> cell parameters: %s" % xmap.cell().format() callback(log_string, xml_root) # put map content in a numpy data structure import numpy map_numpy = numpy.zeros( (xmap.grid_asu().nu(), xmap.grid_asu().nv(), xmap.grid_asu().nw()), dtype='double') log_string += "\n >> exporting a numpy array of %i x %i x %i grid points" \ % (xmap.grid_asu().nu(), xmap.grid_asu().nv(), xmap.grid_asu().nw()) data_points = xmap.export_numpy(map_numpy) callback(log_string, xml_root) atom_list = mmol.model().atom_list() mask = clipper.Xmap_float(xmap.spacegroup(), xmap.cell(), grid_sampling) masker = clipper.EDcalc_mask_float(ipradius) masker.compute(mask, atom_list) mask_matrix = numpy.zeros( (xmap.grid_asu().nu(), xmap.grid_asu().nv(), xmap.grid_asu().nw()), dtype='double') mask_points = mask.export_numpy(mask_matrix) log_string += "\n >> the original map has %i points and the computed mask has %i points" % ( data_points, mask_points) callback(log_string, xml_root) masked_array = map_numpy * mask_matrix log_string += "\n >> non-zero values: original= %i ; mask=%i ; product=%i" % ( numpy.count_nonzero(map_numpy), numpy.count_nonzero(mask_matrix), numpy.count_nonzero(masked_array)) xmap.import_numpy(masked_array) # create HKL_info using user-supplied resolution parameter hkl_info = clipper.HKL_info(xmap.spacegroup(), xmap.cell(), resolution, True) # fft the map f_phi = clipper.HKL_data_F_phi_float(hkl_info, xmap.cell()) log_string += "\n >> now computing map coefficients to %0.1f A resolution..." % ipresol callback(log_string, xml_root) xmap.fft_to(f_phi) log_string += "\n >> writing map coefficients to MTZ file mapout_cut_density.mtz" callback(log_string, xml_root) if ipbfact != 0.0: f_phi.compute_scale_u_iso_fphi(1.0, clipper.Util.b2u(-ipbfact), f_phi) log_string += "\n >> and applying B factor correction - using %3.2f\n" % ipbfact # setup an MTZ file so we can export our map coefficients from clipper_tools.io.map_coefficients import write_to_mtz log_sub, xml_sub = write_to_mtz(f_phi, "mapout_cut_density.mtz") log_string += log_sub xml_root.append(xml_sub) log_string += "\n >> all done" xml_root.attrib['ok'] = 'yes' callback(log_string, xml_root) from clipper_tools.callbacks import offline_flush offline_flush(log_string, xml_root)