Example #1
0
def _draw_source_redshifts(zsrc, zsrc_min, zsrc_max, ngals):
    """Set source galaxy redshifts either set to a fixed value or draw from a predefined
    distribution. Return a table (GCData) of the source galaxies

    Uses a sampling technique found in Numerical Recipes in C, Chap 7.2: Transformation Method.
    Pulling out random values from a given probability distribution.

    Parameters
    ----------
    ngals : float
        Number of galaxies to generate
    zsrc : float or str
        Choose the source galaxy distribution to be fixed or drawn from a predefined distribution.
        float : All sources galaxies at this fixed redshift
        str : Draws individual source gal redshifts from predefined distribution. Options
              are: chang13 or desc_srd
    zsrc_min : float
        The minimum source redshift allowed.
    zsrc_max : float, optional
        If source redshifts are drawn, the maximum source redshift

    Returns
    -------
    galaxy_catalog : clmm.GCData
        Table of true and 'measured' photometric redshifts, which here the same. Redshift photometric errors
        are then added using _compute_photoz_pdfs.

    Notes
    -----
    Much of this code in this function was adapted from the Dallas group
    """
    # Set zsrc to constant value
    if isinstance(zsrc, float):
        zsrc_list = np.ones(ngals) * zsrc

    # Draw zsrc from Chang et al. 2013
    elif zsrc == 'chang13':
        zsrc_list = _draw_random_points_from_distribution(
            zsrc_min, zsrc_max, ngals, _chang_z_distrib)

    # Draw zsrc from the distribution used in the DESC SRD (arxiv:1809.01669)
    elif zsrc == 'desc_srd':
        zsrc_list = _draw_random_points_from_distribution(
            zsrc_min, zsrc_max, ngals, _srd_z_distrib)

    # Draw zsrc from a uniform distribution between zmin and zmax
    elif zsrc == 'uniform':
        zsrc_list = np.random.uniform(zsrc_min, zsrc_max, ngals)

    # Invalid entry
    else:
        raise ValueError(
            "zsrc must be a float, chang13 or desc_srd. You set: {}".format(
                zsrc))

    return GCData([zsrc_list, zsrc_list], names=('ztrue', 'z'))
Example #2
0
def test_print_gc():
    # Cluster with empty galcat
    cl = clmm.GalaxyCluster(unique_id='1',
                            ra=161.3,
                            dec=34.,
                            z=0.3,
                            galcat=GCData())
    print(cl)
    assert isinstance(cl.__str__(), str)
    assert isinstance(cl.__repr__(), str)
    # Cluster with galcat
    galcat = GCData(
        [[120.1, 119.9, 119.9], [41.9, 42.2, 42.2], [1, 1, 1], [1, 2, 3]],
        names=('ra', 'dec', 'z', 'id'))
    cl = clmm.GalaxyCluster(unique_id='1',
                            ra=161.3,
                            dec=34.,
                            z=0.3,
                            galcat=galcat)
    print(cl)
    assert isinstance(cl.__str__(), str)
    assert isinstance(cl.__repr__(), str)
Example #3
0
def test_save_load():
    cl1 = clmm.GalaxyCluster(unique_id='1',
                             ra=161.3,
                             dec=34.,
                             z=0.3,
                             galcat=GCData())
    cl1.save('testcluster.pkl')
    cl2 = clmm.GalaxyCluster.load('testcluster.pkl')
    os.system('rm testcluster.pkl')

    assert_equal(cl2.unique_id, cl1.unique_id)
    assert_equal(cl2.ra, cl1.ra)
    assert_equal(cl2.dec, cl1.dec)
    assert_equal(cl2.z, cl1.z)
Example #4
0
def test_initialization():
    testdict1 = {
        'unique_id': '1',
        'ra': 161.3,
        'dec': 34.,
        'z': 0.3,
        'galcat': GCData()
    }
    cl1 = clmm.GalaxyCluster(**testdict1)

    assert_equal(testdict1['unique_id'], cl1.unique_id)
    assert_equal(testdict1['ra'], cl1.ra)
    assert_equal(testdict1['dec'], cl1.dec)
    assert_equal(testdict1['z'], cl1.z)
    assert isinstance(cl1.galcat, GCData)
Example #5
0
def test_compute_critical_surface_density(modeling_data):
    """ Validation test for critical surface density """
    
    reltol = modeling_data['theory_reltol']
    
    cfg = load_validation_config()
    assert_allclose(theo.compute_critical_surface_density(cfg['cosmo'],
                                                    z_cluster=cfg['TEST_CASE']['z_cluster'],
                                                    z_source=cfg['TEST_CASE']['z_source']),
                    cfg['TEST_CASE']['nc_Sigmac'], reltol)
    # Check errors for z<0
    assert_raises(ValueError, theo.compute_critical_surface_density, cfg['cosmo'], z_cluster=-0.2, z_source=0.3)
    assert_raises(ValueError, theo.compute_critical_surface_density, cfg['cosmo'], z_cluster=0.2, z_source=-0.3)
    # Check behaviour when sources are in front of the lens
    z_cluster = 0.3
    z_source = 0.2
    assert_allclose(theo.compute_critical_surface_density(cfg['cosmo'], z_cluster=z_cluster, z_source=z_source),
                    np.inf, 1.0e-10)
    z_source = [0.2, 0.12, 0.25]
    assert_allclose(theo.compute_critical_surface_density(cfg['cosmo'], z_cluster=z_cluster, z_source=z_source),
                    [np.inf, np.inf, np.inf], 1.0e-10)
    # Check usage with cluster object function
    z_src = np.array([cfg['TEST_CASE']['z_source']])
    cluster = GalaxyCluster(unique_id='blah', ra=0, dec=0, z=cfg['TEST_CASE']['z_cluster'],
                                 galcat=GCData([0*z_src, 0*z_src, z_src],
                                               names=('ra', 'dec', 'z')))
    cluster.add_critical_surface_density(cfg['cosmo'])
    assert_allclose(cluster.galcat['sigma_c'],
                    cfg['TEST_CASE']['nc_Sigmac'], reltol)

    # Object Oriented tests
    m = theo.Modeling()
    m.set_cosmo(cfg['cosmo'])
    assert_allclose(m.eval_critical_surface_density(cfg['TEST_CASE']['z_cluster'],
                                      cfg['TEST_CASE']['z_source']),
                cfg['TEST_CASE']['nc_Sigmac'], reltol)
    # Check behaviour when sources are in front of the lens
    z_cluster = 0.3
    z_source = 0.2
    assert_allclose(m.eval_critical_surface_density(z_cluster, z_source),
                np.inf, 1.0e-10)
    z_source = [0.2, 0.12, 0.25]
    assert_allclose(m.eval_critical_surface_density(z_cluster, z_source),
                [np.inf, np.inf, np.inf], 1.0e-10)
Example #6
0
def test_make_radial_profiles():
    # Set up a cluster object and compute cross and tangential shears
    ra_lens, dec_lens, z_lens = 120., 42., 0.5
    gals = GCData({
        'ra': np.array([120.1, 119.9, 119.9]),
        'dec': np.array([41.9, 42.2, 42.2]),
        'id': np.array([1, 2, 3]),
        'e1': np.array([0.2, 0.4, 0.4]),
        'e2': np.array([0.3, 0.5, 0.5]),
        'z': np.ones(3),
        })
    angsep_units, bin_units = 'radians', 'radians'
    # Set up radial values
    bins_radians = np.array([0.002, 0.003, 0.004])
    expected_radius = [0.0021745039090962414, 0.0037238407383072053]
    expected_flat = {
        'angsep': np.array([0.0021745039090962414, 0.0037238407383072053, 0.0037238407383072053]),
        'cross_shear': np.array([0.2780316984090899, 0.6398792901134982, 0.6398792901134982]),
        'tan_shear': np.array([-0.22956126563459447, -0.02354769805831558, -0.02354769805831558]),
    }
    expected_curve = {# <<TO BE ADDED IN THE FUTURE>>
        'angsep': np.array([]),
        'cross_shear': np.array([]),
        'tan_shear': np.array([]),
    }
    # Geometries to test
    geo_tests = [('flat', expected_flat), ('curve', expected_curve)]
    geo_tests = geo_tests[:1] # <<DELETE THIS LINE WHEN CURVE VALUES ADDED>>
    for geometry, expected in geo_tests:
        #######################################
        ### Use without cluster object ########
        #######################################
        angsep, tshear, xshear = da.compute_tangential_and_cross_components(ra_lens=ra_lens, dec_lens=dec_lens,
                                                  ra_source=gals['ra'], dec_source=gals['dec'],
                                                  shear1=gals['e1'], shear2=gals['e2'], geometry=geometry)
        # Tests passing int as bins arg makes the correct bins
        bins = 2
        vec_bins = clmm.utils.make_bins(np.min(angsep), np.max(angsep), bins)
        testing.assert_array_equal(da.make_radial_profile([tshear, xshear, gals['z']], angsep, angsep_units, bin_units, bins=bins)[0],
                                   da.make_radial_profile([tshear, xshear, gals['z']], angsep, angsep_units, bin_units, bins=vec_bins)[0])
        # Test the outputs of compute_tangential_and_cross_components just to be safe
        testing.assert_allclose(angsep, expected['angsep'], **TOLERANCE,
                                err_msg="Angular Separation not correct when testing shear profiles")
        testing.assert_allclose(tshear, expected['tan_shear'], **TOLERANCE,
                                err_msg="Tangential Shear not correct when testing shear profiles")
        testing.assert_allclose(xshear, expected['cross_shear'], **TOLERANCE,
                                err_msg="Cross Shear not correct when testing shear profiles")
        # Test default behavior, remember that include_empty_bins=False excludes all bins with N>=1
        profile = da.make_radial_profile([tshear, xshear, gals['z']], angsep, angsep_units, bin_units,
                                         bins=bins_radians, include_empty_bins=False)
        _test_profile_table_output(profile, bins_radians[1], expected_radius[1], bins_radians[2],
                                   expected['tan_shear'][1], expected['cross_shear'][1], [2])
        # Test metadata
        testing.assert_array_equal(profile.meta['bin_units'], bin_units)
        testing.assert_array_equal(profile.meta['cosmo'], None)
        # Test simple unit convesion
        profile = da.make_radial_profile([tshear, xshear, gals['z']], angsep*180./np.pi, 'degrees', bin_units,
                                         bins=bins_radians, include_empty_bins=False)
        _test_profile_table_output(profile, bins_radians[1], expected_radius[1], bins_radians[2],
                                   expected['tan_shear'][1], expected['cross_shear'][1], [2])
        # including empty bins
        profile = da.make_radial_profile([tshear, xshear, gals['z']], angsep, angsep_units, bin_units,
                                         bins=bins_radians, include_empty_bins=True)
        _test_profile_table_output(profile, bins_radians[:-1], expected_radius, bins_radians[1:],
                                   expected['tan_shear'][:-1], expected['cross_shear'][:-1], [1,2])
        # test with return_binnumber
        profile, binnumber = da.make_radial_profile([tshear, xshear, gals['z']], angsep, angsep_units, bin_units,
                                         bins=bins_radians, include_empty_bins=True, return_binnumber=True)
        _test_profile_table_output(profile, bins_radians[:-1], expected_radius, bins_radians[1:],
                                   expected['tan_shear'][:-1], expected['cross_shear'][:-1], [1,2])
        testing.assert_array_equal(binnumber, [1, 2, 2])
        ###################################
        ### Test with cluster object ######
        ###################################
        cluster = clmm.GalaxyCluster(unique_id='blah', ra=ra_lens, dec=dec_lens, z=z_lens,
                                     galcat=gals['ra', 'dec', 'e1', 'e2', 'z', 'id'])
        cluster.compute_tangential_and_cross_components(geometry=geometry)
        cluster.make_radial_profile(bin_units, bins=bins_radians, include_empty_bins=False)
        # Test default behavior, remember that include_empty_bins=False excludes all bins with N>=1
        _test_profile_table_output(cluster.profile, bins_radians[1], expected_radius[1], bins_radians[2],
                                   expected['tan_shear'][1], expected['cross_shear'][1], [2],
                                   p0='gt', p1='gx')
        # including empty bins
        cluster.make_radial_profile(bin_units, bins=bins_radians, include_empty_bins=True, table_name='profile2')
        _test_profile_table_output(cluster.profile2, bins_radians[:-1], expected_radius, bins_radians[1:],
                                   expected['tan_shear'][:-1], expected['cross_shear'][:-1], [1,2],
                                   p0='gt', p1='gx')
        # Test with galaxy id's
        cluster.make_radial_profile(bin_units, bins=bins_radians, include_empty_bins=True,
                                    gal_ids_in_bins=True, table_name='profile3')
        _test_profile_table_output(cluster.profile3, bins_radians[:-1], expected_radius, bins_radians[1:],
                                   expected['tan_shear'][:-1], expected['cross_shear'][:-1], [1,2], [[1],[2,3]],
                                   p0='gt', p1='gx')
        # Test it runs with galaxy id's and int bins
        cluster.make_radial_profile(bin_units, bins=5, include_empty_bins=True,
                                    gal_ids_in_bins=True, table_name='profile3')
        # And overwriting table
        cluster.make_radial_profile(bin_units, bins=bins_radians, include_empty_bins=True,
                                    gal_ids_in_bins=True, table_name='profile3')
        _test_profile_table_output(cluster.profile3, bins_radians[:-1], expected_radius, bins_radians[1:],
                                   expected['tan_shear'][:-1], expected['cross_shear'][:-1], [1,2], [[1],[2,3]],
                                   p0='gt', p1='gx')
        # Test it runs with galaxy id's and int bins and no empty bins
        cluster.make_radial_profile(bin_units, bins=bins_radians, include_empty_bins=False,
                                    gal_ids_in_bins=True, table_name='profile3')
        _test_profile_table_output(cluster.profile3, bins_radians[1], expected_radius[1], bins_radians[2],
                                   expected['tan_shear'][1], expected['cross_shear'][1], [2],
                                   p0='gt', p1='gx')
    ########################################
    ### Basic tests of cluster object ######
    ########################################
    # Test error of missing redshift
    cluster = clmm.GalaxyCluster(unique_id='blah', ra=ra_lens, dec=dec_lens, z=z_lens,
                                     galcat=gals['ra', 'dec', 'e1', 'e2'])
    cluster.compute_tangential_and_cross_components()
    testing.assert_raises(TypeError, cluster.make_radial_profile, bin_units)
    # Test error of missing shear
    cluster = clmm.GalaxyCluster(unique_id='blah', ra=ra_lens, dec=dec_lens, z=z_lens,
                                     galcat=gals['ra', 'dec', 'e1', 'e2', 'z', 'id'])
    testing.assert_raises(TypeError, cluster.make_radial_profile, bin_units)
    # Test error with overwrite=False
    cluster.compute_tangential_and_cross_components()
    cluster.make_radial_profile(bin_units, bins=bins_radians, table_name='profile3')
    testing.assert_raises(AttributeError, cluster.make_radial_profile, bin_units, bins=bins_radians,
                          table_name='profile3', overwrite=False)
    # Check error of missing id's
    cluster_noid = clmm.GalaxyCluster(unique_id='blah', ra=ra_lens, dec=dec_lens, z=z_lens,
                                 galcat=gals['ra', 'dec', 'e1', 'e2', 'z'])
    cluster_noid.compute_tangential_and_cross_components()
    testing.assert_raises(TypeError, cluster_noid.make_radial_profile, bin_units, gal_ids_in_bins=True)
Example #7
0
def test_compute_tangential_and_cross_components(modeling_data):
    # Input values
    reltol = modeling_data['dataops_reltol']
    ra_lens, dec_lens, z_lens = 120., 42., 0.5
    gals = GCData({
        'ra': np.array([120.1, 119.9]),
        'dec': np.array([41.9, 42.2]),
        'id': np.array([1, 2]),
        'e1': np.array([0.2, 0.4]),
        'e2': np.array([0.3, 0.5]),
        'z': np.array([1.,2.]),
        })
    # Correct values
    expected_flat = {
        'angsep': np.array([0.0021745039090962414, 0.0037238407383072053]),
        'cross_shear': np.array([0.2780316984090899, 0.6398792901134982]),
        'tangential_shear': np.array([-0.22956126563459447, -0.02354769805831558]),
        # DeltaSigma expected values for clmm.Cosmology(H0=67.66, Omega_dm0=0.262, Omega_b0=0.049)
        'cross_DS': np.array([8.58093068e+14, 1.33131522e+15]), #[1224.3326297393244, 1899.6061989365176])*0.7*1.0e12*1.0002565513832675
        'tangential_DS': np.array([-7.08498103e+14, -4.89926917e+13]), #[-1010.889584349285, -69.9059242788237])*0.7*1.0e12*1.0002565513832675
    }
    expected_curve = {# <<TO BE ADDED IN THE FUTURE>>
        'angsep': np.array([]),
        'cross_shear': np.array([]),
        'tangential_shear': np.array([]),
        'cross_DS': np.array([]),
        'tangential_DS': np.array([]),
    }
    # Geometries to test
    geo_tests = [('flat', expected_flat), ('curve', expected_curve)]
    geo_tests = geo_tests[:1] # <<DELETE THIS LINE WHEN CURVE VALUES ADDED>>
    # test incosnsitent data
    testing.assert_raises(TypeError, da.compute_tangential_and_cross_components,
        ra_lens=ra_lens, dec_lens=dec_lens, ra_source=gals['ra'][0], dec_source=gals['dec'],
        shear1=gals['e1'], shear2=gals['e2'])
    testing.assert_raises(TypeError, da.compute_tangential_and_cross_components,
        ra_lens=ra_lens, dec_lens=dec_lens, ra_source=gals['ra'][:1], dec_source=gals['dec'],
        shear1=gals['e1'], shear2=gals['e2'])
    # test not implemented geometry
    testing.assert_raises(NotImplementedError, da.compute_tangential_and_cross_components,
        ra_lens=ra_lens, dec_lens=dec_lens, ra_source=gals['ra'], dec_source=gals['dec'],
        shear1=gals['e1'], shear2=gals['e2'], geometry='something crazy')
    for geometry, expected in geo_tests:
        # Pass arrays directly into function
        angsep, tshear, xshear = da.compute_tangential_and_cross_components(ra_lens=ra_lens, dec_lens=dec_lens,
                                              ra_source=gals['ra'], dec_source=gals['dec'],
                                              shear1=gals['e1'], shear2=gals['e2'], geometry=geometry)
        testing.assert_allclose(angsep, expected['angsep'], **TOLERANCE,
                            err_msg="Angular Separation not correct when passing lists")
        testing.assert_allclose(tshear, expected['tangential_shear'], **TOLERANCE,
                            err_msg="Tangential Shear not correct when passing lists")
        testing.assert_allclose(xshear, expected['cross_shear'], **TOLERANCE,
                            err_msg="Cross Shear not correct when passing lists")
        # Pass LISTS into function
        angsep, tshear, xshear = da.compute_tangential_and_cross_components(ra_lens=ra_lens, dec_lens=dec_lens,
                                    ra_source=list(gals['ra']), dec_source=list(gals['dec']),
                                    shear1=list(gals['e1']), shear2=list(gals['e2']), geometry=geometry)
        testing.assert_allclose(angsep, expected['angsep'], **TOLERANCE,
                                err_msg="Angular Separation not correct when passing lists")
        testing.assert_allclose(tshear, expected['tangential_shear'], **TOLERANCE,
                                err_msg="Tangential Shear not correct when passing lists")
        testing.assert_allclose(xshear, expected['cross_shear'], **TOLERANCE,
                                err_msg="Cross Shear not correct when passing lists")
    # Use the cluster method
    cluster = clmm.GalaxyCluster(unique_id='blah', ra=ra_lens, dec=dec_lens, z=z_lens,
                                 galcat=gals['ra', 'dec', 'e1', 'e2'])
    # Test error with bad name/missing column
    testing.assert_raises(TypeError, cluster.compute_tangential_and_cross_components,
                          shape_component1='crazy name')
    # Test output
    for geometry, expected in geo_tests:
        angsep3, tshear3, xshear3 = cluster.compute_tangential_and_cross_components(geometry=geometry)
        testing.assert_allclose(angsep3, expected['angsep'], **TOLERANCE,
                                err_msg="Angular Separation not correct when using cluster method")
        testing.assert_allclose(tshear3, expected['tangential_shear'], **TOLERANCE,
                                err_msg="Tangential Shear not correct when using cluster method")
        testing.assert_allclose(xshear3, expected['cross_shear'], **TOLERANCE,
                                err_msg="Cross Shear not correct when using cluster method")
    # Check behaviour for the deltasigma option.
    cosmo = clmm.Cosmology(H0=70.0, Omega_dm0=0.275, Omega_b0=0.025)
    # test missing info for is_deltasigma=True
    testing.assert_raises(TypeError, da.compute_tangential_and_cross_components,
        ra_lens=ra_lens, dec_lens=dec_lens, ra_source=gals['ra'], dec_source=gals['dec'],
        shear1=gals['e1'], shear2=gals['e2'], is_deltasigma=True, cosmo=None, z_lens=z_lens, z_source=gals['z'])
    testing.assert_raises(TypeError, da.compute_tangential_and_cross_components,
        ra_lens=ra_lens, dec_lens=dec_lens, ra_source=gals['ra'], dec_source=gals['dec'],
        shear1=gals['e1'], shear2=gals['e2'], is_deltasigma=True, cosmo=cosmo, z_lens=None, z_source=gals['z'])
    testing.assert_raises(TypeError, da.compute_tangential_and_cross_components,
        ra_lens=ra_lens, dec_lens=dec_lens, ra_source=gals['ra'], dec_source=gals['dec'],
        shear1=gals['e1'], shear2=gals['e2'], is_deltasigma=True, cosmo=cosmo, z_lens=z_lens, z_source=None)
    # check values for DeltaSigma
    for geometry, expected in geo_tests:
        angsep_DS, tDS, xDS = da.compute_tangential_and_cross_components(
            ra_lens=ra_lens, dec_lens=dec_lens,
            ra_source=gals['ra'], dec_source=gals['dec'],
            shear1=gals['e1'], shear2=gals['e2'], is_deltasigma=True,
            cosmo=cosmo, z_lens=z_lens, z_source=gals['z'], geometry=geometry)
        testing.assert_allclose(angsep_DS, expected['angsep'], reltol,
                                err_msg="Angular Separation not correct")
        testing.assert_allclose(tDS, expected['tangential_DS'], reltol,
                                err_msg="Tangential Shear not correct")
        testing.assert_allclose(xDS, expected['cross_DS'], reltol,
                                err_msg="Cross Shear not correct")
    # Tests with the cluster object
    # cluster object missing source redshift, and function call missing cosmology
    cluster = clmm.GalaxyCluster(unique_id='blah', ra=ra_lens, dec=dec_lens, z=z_lens,
                                 galcat=gals['ra', 'dec', 'e1', 'e2'])
    testing.assert_raises(TypeError, cluster.compute_tangential_and_cross_components, is_deltasigma=True)
    # cluster object OK but function call missing cosmology
    cluster = clmm.GalaxyCluster(unique_id='blah', ra=ra_lens, dec=dec_lens, z=z_lens,
                                 galcat=gals['ra', 'dec', 'e1', 'e2','z'])
    testing.assert_raises(TypeError, cluster.compute_tangential_and_cross_components, is_deltasigma=True)
    # check values for DeltaSigma
    for geometry, expected in geo_tests:
        angsep_DS, tDS, xDS = cluster.compute_tangential_and_cross_components(cosmo=cosmo, is_deltasigma=True, geometry=geometry)
        testing.assert_allclose(angsep_DS, expected['angsep'], reltol,
                                err_msg="Angular Separation not correct when using cluster method")
        testing.assert_allclose(tDS, expected['tangential_DS'], reltol,
                                err_msg="Tangential Shear not correct when using cluster method")
        testing.assert_allclose(xDS, expected['cross_DS'], reltol,
                                err_msg="Cross Shear not correct when using cluster method")
Example #8
0
def test_integrity():  # Converge on name
    # Ensure we have all necessary values to make a GalaxyCluster
    assert_raises(TypeError,
                  clmm.GalaxyCluster,
                  ra=161.3,
                  dec=34.,
                  z=0.3,
                  galcat=GCData())
    assert_raises(TypeError,
                  clmm.GalaxyCluster,
                  unique_id=1,
                  dec=34.,
                  z=0.3,
                  galcat=GCData())
    assert_raises(TypeError,
                  clmm.GalaxyCluster,
                  unique_id=1,
                  ra=161.3,
                  z=0.3,
                  galcat=GCData())
    assert_raises(TypeError,
                  clmm.GalaxyCluster,
                  unique_id=1,
                  ra=161.3,
                  dec=34.,
                  galcat=GCData())

    # Test that we get errors when we pass in values outside of the domains
    assert_raises(ValueError,
                  clmm.GalaxyCluster,
                  unique_id=1,
                  ra=-360.3,
                  dec=34.,
                  z=0.3,
                  galcat=GCData())
    assert_raises(ValueError,
                  clmm.GalaxyCluster,
                  unique_id=1,
                  ra=360.3,
                  dec=34.,
                  z=0.3,
                  galcat=GCData())
    assert_raises(ValueError,
                  clmm.GalaxyCluster,
                  unique_id=1,
                  ra=161.3,
                  dec=95.,
                  z=0.3,
                  galcat=GCData())
    assert_raises(ValueError,
                  clmm.GalaxyCluster,
                  unique_id=1,
                  ra=161.3,
                  dec=-95.,
                  z=0.3,
                  galcat=GCData())
    assert_raises(ValueError,
                  clmm.GalaxyCluster,
                  unique_id=1,
                  ra=161.3,
                  dec=34.,
                  z=-0.3,
                  galcat=GCData())

    # Test that inputs are the correct type
    assert_raises(TypeError,
                  clmm.GalaxyCluster,
                  unique_id=None,
                  ra=161.3,
                  dec=34.,
                  z=0.3,
                  galcat=GCData())
    assert_raises(TypeError,
                  clmm.GalaxyCluster,
                  unique_id=1,
                  ra=161.3,
                  dec=34.,
                  z=0.3,
                  galcat=1)
    assert_raises(TypeError,
                  clmm.GalaxyCluster,
                  unique_id=1,
                  ra=161.3,
                  dec=34.,
                  z=0.3,
                  galcat=[])
    assert_raises(TypeError,
                  clmm.GalaxyCluster,
                  unique_id=1,
                  ra=None,
                  dec=34.,
                  z=0.3,
                  galcat=GCData())
    assert_raises(TypeError,
                  clmm.GalaxyCluster,
                  unique_id=1,
                  ra=161.3,
                  dec=None,
                  z=0.3,
                  galcat=GCData())
    assert_raises(TypeError,
                  clmm.GalaxyCluster,
                  unique_id=1,
                  ra=161.3,
                  dec=34.,
                  z=None,
                  galcat=GCData())

    # Test that id can support numbers and strings
    assert isinstance(
        clmm.GalaxyCluster(unique_id=1,
                           ra=161.3,
                           dec=34.,
                           z=0.3,
                           galcat=GCData()).unique_id, str)
    # assert clmm.GalaxyCluster(unique_id=1.0, ra=161.3, dec=34., z=0.3, galcat=GCData()).unique_id == '1'
    assert isinstance(
        clmm.GalaxyCluster(unique_id='1',
                           ra=161.3,
                           dec=34.,
                           z=0.3,
                           galcat=GCData()).unique_id, str)

    # Test that ra/dec/z can be converted from int/str to float if needed
    assert clmm.GalaxyCluster('1', '161.', '55.', '.3', GCData())
    assert clmm.GalaxyCluster('1', 161, 55, 1, GCData())
Example #9
0
def test_make_radial_profiles():
    # Set up a cluster object and compute cross and tangential shears
    ra_lens, dec_lens, z_lens = 120., 42., 0.5
    ra_source = np.array([120.1, 119.9, 119.9])
    dec_source = np.array([41.9, 42.2, 42.2])
    id_source = np.array([1, 2, 3])
    shear1 = np.array([0.2, 0.4, 0.4])
    shear2 = np.array([0.3, 0.5, 0.5])
    z_sources = np.ones(3)
    angsep_units, bin_units = 'radians', 'radians'
    # Set up radial values
    bins_radians = np.array([0.002, 0.003, 0.004])
    expected_radius = [0.0021745039090962414, 0.0037238407383072053]
    #######################################
    ### Use without cluster object ########
    #######################################
    angsep, tshear, xshear = da.compute_tangential_and_cross_components(ra_lens=ra_lens, dec_lens=dec_lens,
                                              ra_source=ra_source, dec_source=dec_source,
                                              shear1=shear1, shear2=shear2)
    # Tests passing int as bins arg makes the correct bins
    bins = 2
    vec_bins = clmm.utils.make_bins(np.min(angsep), np.max(angsep), bins)
    testing.assert_array_equal(da.make_radial_profile([tshear, xshear, z_sources], angsep, angsep_units, bin_units, bins=bins)[0],
                               da.make_radial_profile([tshear, xshear, z_sources], angsep, angsep_units, bin_units, bins=vec_bins)[0])
    # Test the outputs of compute_tangential_and_cross_components just to be safe
    expected_angsep = np.array([0.0021745039090962414, 0.0037238407383072053, 0.0037238407383072053])
    expected_cross_shear = np.array([0.2780316984090899, 0.6398792901134982, 0.6398792901134982])
    expected_tan_shear = np.array([-0.22956126563459447, -0.02354769805831558, -0.02354769805831558])
    testing.assert_allclose(angsep, expected_angsep, **TOLERANCE,
                            err_msg="Angular Separation not correct when testing shear profiles")
    testing.assert_allclose(tshear, expected_tan_shear, **TOLERANCE,
                            err_msg="Tangential Shear not correct when testing shear profiles")
    testing.assert_allclose(xshear, expected_cross_shear, **TOLERANCE,
                            err_msg="Cross Shear not correct when testing shear profiles")
    # Test default behavior, remember that include_empty_bins=False excludes all bins with N>=1
    profile = da.make_radial_profile([tshear, xshear, z_sources], angsep, angsep_units, bin_units,
                                     bins=bins_radians, include_empty_bins=False)
    _test_profile_table_output(profile, bins_radians[1], expected_radius[1], bins_radians[2],
                               expected_tan_shear[1], expected_cross_shear[1], [2])
    # Test metadata
    testing.assert_array_equal(profile.meta['bin_units'], bin_units)
    testing.assert_array_equal(profile.meta['cosmo'], None)
    # Test simple unit convesion
    profile = da.make_radial_profile([tshear, xshear, z_sources], angsep*180./np.pi, 'degrees', bin_units,
                                     bins=bins_radians, include_empty_bins=False)
    _test_profile_table_output(profile, bins_radians[1], expected_radius[1], bins_radians[2],
                               expected_tan_shear[1], expected_cross_shear[1], [2])
    # including empty bins
    profile = da.make_radial_profile([tshear, xshear, z_sources], angsep, angsep_units, bin_units,
                                     bins=bins_radians, include_empty_bins=True)
    _test_profile_table_output(profile, bins_radians[:-1], expected_radius, bins_radians[1:],
                               expected_tan_shear[:-1], expected_cross_shear[:-1], [1,2])
    # test with return_binnumber
    profile, binnumber = da.make_radial_profile([tshear, xshear, z_sources], angsep, angsep_units, bin_units,
                                     bins=bins_radians, include_empty_bins=True, return_binnumber=True)
    _test_profile_table_output(profile, bins_radians[:-1], expected_radius, bins_radians[1:],
                               expected_tan_shear[:-1], expected_cross_shear[:-1], [1,2])
    testing.assert_array_equal(binnumber, [1, 2, 2])
    ###################################
    ### Test with cluster object ######
    ###################################
    # Test error of missing redshift
    cluster = clmm.GalaxyCluster(unique_id='blah', ra=ra_lens, dec=dec_lens, z=z_lens,
                                     galcat=GCData([ra_source, dec_source,
                                                   shear1, shear2],
                                                  names=('ra', 'dec', 'e1', 'e2')))
    cluster.compute_tangential_and_cross_components()
    testing.assert_raises(TypeError, cluster.make_radial_profile, bin_units)
    # Test error of missing shear
    cluster = clmm.GalaxyCluster(unique_id='blah', ra=ra_lens, dec=dec_lens, z=z_lens,
                                 galcat=GCData([ra_source, dec_source,
                                               shear1, shear2, z_sources, id_source],
                                              names=('ra', 'dec', 'e1', 'e2', 'z', 'id')))
    testing.assert_raises(TypeError, cluster.make_radial_profile, bin_units)
    # Test default behavior, remember that include_empty_bins=False excludes all bins with N>=1
    cluster.compute_tangential_and_cross_components()
    cluster.make_radial_profile(bin_units, bins=bins_radians, include_empty_bins=False)
    _test_profile_table_output(cluster.profile, bins_radians[1], expected_radius[1], bins_radians[2],
                               expected_tan_shear[1], expected_cross_shear[1], [2],
                               p0='gt', p1='gx')
    # including empty bins
    cluster.make_radial_profile(bin_units, bins=bins_radians, include_empty_bins=True, table_name='profile2')
    _test_profile_table_output(cluster.profile2, bins_radians[:-1], expected_radius, bins_radians[1:],
                               expected_tan_shear[:-1], expected_cross_shear[:-1], [1,2],
                               p0='gt', p1='gx')
    # Test with galaxy id's
    cluster.make_radial_profile(bin_units, bins=bins_radians, include_empty_bins=True,
                                gal_ids_in_bins=True, table_name='profile3')
    _test_profile_table_output(cluster.profile3, bins_radians[:-1], expected_radius, bins_radians[1:],
                               expected_tan_shear[:-1], expected_cross_shear[:-1], [1,2], [[1],[2,3]],
                               p0='gt', p1='gx')
    # Test it runs with galaxy id's and int bins
    cluster.make_radial_profile(bin_units, bins=5, include_empty_bins=True,
                                gal_ids_in_bins=True, table_name='profile3')
    # And overwriting table
    cluster.make_radial_profile(bin_units, bins=bins_radians, include_empty_bins=True,
                                gal_ids_in_bins=True, table_name='profile3')
    _test_profile_table_output(cluster.profile3, bins_radians[:-1], expected_radius, bins_radians[1:],
                               expected_tan_shear[:-1], expected_cross_shear[:-1], [1,2], [[1],[2,3]],
                               p0='gt', p1='gx')
    # Test it runs with galaxy id's and int bins and no empty bins
    cluster.make_radial_profile(bin_units, bins=bins_radians, include_empty_bins=False,
                                gal_ids_in_bins=True, table_name='profile3')
    _test_profile_table_output(cluster.profile3, bins_radians[1], expected_radius[1], bins_radians[2],
                               expected_tan_shear[1], expected_cross_shear[1], [2],
                               p0='gt', p1='gx')
    # Test error with overwrite=False
    testing.assert_raises(AttributeError, cluster.make_radial_profile, bin_units, bins=bins_radians,
                            include_empty_bins=True, gal_ids_in_bins=True, table_name='profile3', overwrite=False)
    # Check error of missing id's
    cluster_noid = clmm.GalaxyCluster(unique_id='blah', ra=ra_lens, dec=dec_lens, z=z_lens,
                                 galcat=GCData([ra_source, dec_source,
                                               shear1, shear2, z_sources],
                                              names=('ra', 'dec', 'e1', 'e2', 'z')))
    cluster_noid.compute_tangential_and_cross_components()
    testing.assert_raises(TypeError, cluster_noid.make_radial_profile, bin_units, gal_ids_in_bins=True)
Example #10
0
def test_compute_tangential_and_cross_components(modeling_data):
    # Input values
    ra_lens, dec_lens, z_lens = 120., 42., 0.5
    ra_source = np.array([120.1, 119.9])
    dec_source = np.array([41.9, 42.2])
    z_source = np.array([1.,2.])
    shear1 = np.array([0.2, 0.4])
    shear2 = np.array([0.3, 0.5])
    # Correct values
    expected_angsep = np.array([0.0021745039090962414, 0.0037238407383072053])
    expected_cross_shear = np.array([0.2780316984090899, 0.6398792901134982])
    expected_tangential_shear = np.array([-0.22956126563459447, -0.02354769805831558])
    # DeltaSigma expected values for clmm.Cosmology(H0=70.0, Omega_dm0=0.275, Omega_b0=0.025)
    expected_cross_DS = np.array([1224.3326297393244, 1899.6061989365176])*0.7*1.0e12*1.0002565513832675
    expected_tangential_DS = np.array([-1010.889584349285, -69.9059242788237])*0.7*1.0e12*1.0002565513832675
    # test incosnsitent data
    testing.assert_raises(TypeError, da.compute_tangential_and_cross_components,
        ra_lens=ra_lens, dec_lens=dec_lens, ra_source=ra_source[0], dec_source=dec_source,
        shear1=shear1, shear2=shear2)
    testing.assert_raises(TypeError, da.compute_tangential_and_cross_components,
        ra_lens=ra_lens, dec_lens=dec_lens, ra_source=ra_source[:1], dec_source=dec_source,
        shear1=shear1, shear2=shear2)
    # test not implemented geometry
    testing.assert_raises(NotImplementedError, da.compute_tangential_and_cross_components,
        ra_lens=ra_lens, dec_lens=dec_lens, ra_source=ra_source, dec_source=dec_source,
        shear1=shear1, shear2=shear2, geometry='something crazy')
    # Pass arrays directly into function
    angsep, tshear, xshear = da.compute_tangential_and_cross_components(ra_lens=ra_lens, dec_lens=dec_lens,
                                              ra_source=ra_source, dec_source=dec_source,
                                              shear1=shear1, shear2=shear2)
    testing.assert_allclose(angsep, expected_angsep, **TOLERANCE,
                            err_msg="Angular Separation not correct when passing lists")
    testing.assert_allclose(tshear, expected_tangential_shear, **TOLERANCE,
                            err_msg="Tangential Shear not correct when passing lists")
    testing.assert_allclose(xshear, expected_cross_shear, **TOLERANCE,
                            err_msg="Cross Shear not correct when passing lists")
    # Pass LISTS into function
    angsep, tshear, xshear = da.compute_tangential_and_cross_components(ra_lens=ra_lens, dec_lens=dec_lens,
                                ra_source=list(ra_source), dec_source=list(dec_source),
                                shear1=list(shear1), shear2=list(shear2))
    testing.assert_allclose(angsep, expected_angsep, **TOLERANCE,
                            err_msg="Angular Separation not correct when passing lists")
    testing.assert_allclose(tshear, expected_tangential_shear, **TOLERANCE,
                            err_msg="Tangential Shear not correct when passing lists")
    testing.assert_allclose(xshear, expected_cross_shear, **TOLERANCE,
                            err_msg="Cross Shear not correct when passing lists")
    # Use the cluster method
    cluster = clmm.GalaxyCluster(unique_id='blah', ra=ra_lens, dec=dec_lens, z=z_lens,
                                 galcat=GCData([ra_source, dec_source, shear1, shear2],
                                              names=('ra', 'dec', 'e1', 'e2')))
    # Test error with bad name/missing column
    testing.assert_raises(TypeError, cluster.compute_tangential_and_cross_components,
                          shape_component1='crazy name')
    # Test output
    angsep3, tshear3, xshear3 = cluster.compute_tangential_and_cross_components()
    testing.assert_allclose(angsep3, expected_angsep, **TOLERANCE,
                            err_msg="Angular Separation not correct when using cluster method")
    testing.assert_allclose(tshear3, expected_tangential_shear, **TOLERANCE,
                            err_msg="Tangential Shear not correct when using cluster method")
    testing.assert_allclose(xshear3, expected_cross_shear, **TOLERANCE,
                            err_msg="Cross Shear not correct when using cluster method")
    # Check behaviour for the deltasigma option.
    cosmo = clmm.Cosmology(H0=70.0, Omega_dm0=0.275, Omega_b0=0.025)
    # test missing info for is_deltasigma=True
    testing.assert_raises(TypeError, da.compute_tangential_and_cross_components,
        ra_lens=ra_lens, dec_lens=dec_lens, ra_source=ra_source, dec_source=dec_source,
        shear1=shear1, shear2=shear2, is_deltasigma=True, cosmo=None, z_lens=z_lens, z_source=z_source)
    testing.assert_raises(TypeError, da.compute_tangential_and_cross_components,
        ra_lens=ra_lens, dec_lens=dec_lens, ra_source=ra_source, dec_source=dec_source,
        shear1=shear1, shear2=shear2, is_deltasigma=True, cosmo=cosmo, z_lens=None, z_source=z_source)
    testing.assert_raises(TypeError, da.compute_tangential_and_cross_components,
        ra_lens=ra_lens, dec_lens=dec_lens, ra_source=ra_source, dec_source=dec_source,
        shear1=shear1, shear2=shear2, is_deltasigma=True, cosmo=cosmo, z_lens=z_lens, z_source=None)
    # check values for DeltaSigma
    angsep_DS, tDS, xDS = da.compute_tangential_and_cross_components(
        ra_lens=ra_lens, dec_lens=dec_lens,
        ra_source=ra_source, dec_source=dec_source,
        shear1=shear1, shear2=shear2, is_deltasigma=True,
        cosmo=cosmo, z_lens=z_lens, z_source=z_source)
    testing.assert_allclose(angsep_DS, expected_angsep, **TOLERANCE,
                            err_msg="Angular Separation not correct")
    testing.assert_allclose(tDS, expected_tangential_DS, **TOLERANCE,
                            err_msg="Tangential Shear not correct")
    testing.assert_allclose(xDS, expected_cross_DS, **TOLERANCE,
                            err_msg="Cross Shear not correct")
    # Tests with the cluster object
    # cluster object missing source redshift, and function call missing cosmology
    cluster = clmm.GalaxyCluster(unique_id='blah', ra=ra_lens, dec=dec_lens, z=z_lens,
                                 galcat=GCData([ra_source, dec_source, shear1, shear2],
                                              names=('ra', 'dec', 'e1', 'e2')))
    testing.assert_raises(TypeError, cluster.compute_tangential_and_cross_components, is_deltasigma=True)
    # cluster object OK but function call missing cosmology
    cluster = clmm.GalaxyCluster(unique_id='blah', ra=ra_lens, dec=dec_lens, z=z_lens,
                                 galcat=GCData([ra_source, dec_source, shear1, shear2, z_source],
                                               names=('ra', 'dec', 'e1', 'e2','z')))
    testing.assert_raises(TypeError, cluster.compute_tangential_and_cross_components, is_deltasigma=True)
    # check values for DeltaSigma
    angsep_DS, tDS, xDS = cluster.compute_tangential_and_cross_components(cosmo=cosmo, is_deltasigma=True)
    testing.assert_allclose(angsep_DS, expected_angsep, **TOLERANCE,
                            err_msg="Angular Separation not correct when using cluster method")
    testing.assert_allclose(tDS, expected_tangential_DS, **TOLERANCE,
                            err_msg="Tangential Shear not correct when using cluster method")
    testing.assert_allclose(xDS, expected_cross_DS, **TOLERANCE,
                            err_msg="Cross Shear not correct when using cluster method")
Example #11
0
def test_init():
    gcdata = GCData()
    assert_equal(None, gcdata.meta['cosmo'])
Example #12
0
def test_update_cosmo():
    # Define inputs
    cosmo1 = Cosmology(H0=70.0, Omega_dm0=0.3 - 0.045, Omega_b0=0.045)
    desc1 = cosmo1.get_desc()
    gcdata = GCData()
    # check it has __str__ adn __repr__
    gcdata.__str__()
    gcdata.__repr__()
    # manual update
    gcdata.update_cosmo_ext_valid(gcdata, cosmo1, overwrite=False)
    assert_equal(desc1, gcdata.meta['cosmo'])
    # check that adding cosmo metadata manually is forbidden
    assert_raises(ValueError, gcdata.meta.__setitem__, 'cosmo', None)
    assert_raises(ValueError, gcdata.meta.__setitem__, 'cosmo', cosmo1)
    # update_cosmo funcs
    # input_cosmo=None, data_cosmo=None
    gcdata = GCData()
    gcdata.update_cosmo_ext_valid(gcdata, None, overwrite=False)
    assert_equal(None, gcdata.meta['cosmo'])

    gcdata = GCData()
    gcdata.update_cosmo_ext_valid(gcdata, None, overwrite=True)
    assert_equal(None, gcdata.meta['cosmo'])

    gcdata = GCData()
    gcdata.update_cosmo(None, overwrite=False)
    assert_equal(None, gcdata.meta['cosmo'])

    gcdata = GCData()
    gcdata.update_cosmo(None, overwrite=True)
    assert_equal(None, gcdata.meta['cosmo'])

    # input_cosmo!=None, data_cosmo=None
    gcdata = GCData()
    gcdata.update_cosmo_ext_valid(gcdata, cosmo1, overwrite=True)
    assert_equal(desc1, gcdata.meta['cosmo'])

    gcdata = GCData()
    gcdata.update_cosmo(cosmo1, overwrite=False)
    assert_equal(desc1, gcdata.meta['cosmo'])

    gcdata = GCData()
    gcdata.update_cosmo(cosmo1, overwrite=True)
    assert_equal(desc1, gcdata.meta['cosmo'])

    # input_cosmo=data_cosmo!=None
    gcdata = GCData()
    gcdata.update_cosmo(cosmo1)
    gcdata.update_cosmo_ext_valid(gcdata, cosmo1, overwrite=False)
    assert_equal(desc1, gcdata.meta['cosmo'])

    gcdata = GCData()
    gcdata.update_cosmo(cosmo1)
    gcdata.update_cosmo_ext_valid(gcdata, cosmo1, overwrite=True)
    assert_equal(desc1, gcdata.meta['cosmo'])

    gcdata = GCData()
    gcdata.update_cosmo(cosmo1)
    gcdata.update_cosmo(cosmo1, overwrite=False)
    assert_equal(desc1, gcdata.meta['cosmo'])

    gcdata = GCData()
    gcdata.update_cosmo(cosmo1)
    gcdata.update_cosmo(cosmo1, overwrite=True)
    assert_equal(desc1, gcdata.meta['cosmo'])

    # input_cosmo(!=None) != data_cosmo(!=None)
    cosmo2 = Cosmology(H0=60.0, Omega_dm0=0.3 - 0.045, Omega_b0=0.045)
    desc2 = cosmo2.get_desc()

    gcdata = GCData()
    gcdata.update_cosmo(cosmo1)
    assert_raises(TypeError,
                  gcdata.update_cosmo_ext_valid,
                  gcdata,
                  cosmo2,
                  overwrite=False)
    assert_raises(TypeError, gcdata.update_cosmo_ext_valid, gcdata, cosmo2)

    gcdata = GCData()
    gcdata.update_cosmo(cosmo1)
    gcdata.update_cosmo_ext_valid(gcdata, cosmo2, overwrite=True)
    assert_equal(desc2, gcdata.meta['cosmo'])

    gcdata = GCData()
    gcdata.update_cosmo(cosmo1)
    gcdata.update_cosmo(cosmo1, overwrite=False)
    assert_equal(desc1, gcdata.meta['cosmo'])

    gcdata = GCData()
    gcdata.update_cosmo(cosmo1)
    assert_raises(TypeError, gcdata.update_cosmo, cosmo2, overwrite=False)
    assert_raises(TypeError, gcdata.update_cosmo, cosmo2)
Example #13
0
def _draw_source_redshifts(zsrc, zsrc_min, zsrc_max, ngals):
    """Set source galaxy redshifts either set to a fixed value or draw from a predefined
    distribution. Return a table (GCData) of the source galaxies

    Uses a sampling technique found in Numerical Recipes in C, Chap 7.2: Transformation Method.
    Pulling out random values from a given probability distribution.

    Parameters
    ----------
    ngals : float
        Number of galaxies to generate
    zsrc : float or str
        Choose the source galaxy distribution to be fixed or drawn from a predefined distribution.
        float : All sources galaxies at this fixed redshift
        str : Draws individual source gal redshifts from predefined distribution. Options
              are: chang13
    zsrc_min : float
        The minimum source redshift allowed.
    zsrc_max : float, optional
        If source redshifts are drawn, the maximum source redshift

    Returns
    -------
    galaxy_catalog : clmm.GCData
        Table of true and 'measured' photometric redshifts, which here the same. Redshift photometric errors
        are then added using _compute_photoz_pdfs.

    Notes
    -----
    Much of this code in this function was adapted from the Dallas group
    """
    # Set zsrc to constant value
    if isinstance(zsrc, float):
        zsrc_list = np.ones(ngals) * zsrc

    # Draw zsrc from Chang et al. 2013
    elif zsrc == 'chang13':

        def integrated_pzfxn(zmax, func):
            """Integrated redshift distribution function for transformation method"""
            val, _ = integrate.quad(func, zsrc_min, zmax)
            return val

        vectorization_integrated_pzfxn = np.vectorize(integrated_pzfxn)

        zsrc_domain = np.arange(zsrc_min, zsrc_max, 0.001)

        # Cumulative probability function of the redshift distribution
        probdist = vectorization_integrated_pzfxn(zsrc_domain,
                                                  _chang_z_distrib)

        uniform_deviate = np.random.uniform(probdist.min(), probdist.max(),
                                            ngals)
        zsrc_list = interp1d(probdist, zsrc_domain,
                             kind='linear')(uniform_deviate)

    # Draw zsrc from a uniform distribution between zmin and zmax
    elif zsrc == 'uniform':
        zsrc_list = np.random.uniform(zsrc_min, zsrc_max, ngals)

    # Invalid entry
    else:
        raise ValueError(
            "zsrc must be a float or chang13. You set: {}".format(zsrc))

    return GCData([zsrc_list, zsrc_list], names=('ztrue', 'z'))