Example #1
0
def run_example():
    """
    Load a data table, compute a list of clusters and
    plot a list of clusters

    Set DESKTOP = True/False to use either matplotlib or simplegui
    """
    data_table = load_data_table(DATA_111_URL)

    singleton_list = []
    for line in data_table:
        singleton_list.append(
            alg_cluster.Cluster(set([line[0]]), line[1], line[2], line[3],
                                line[4]))

    #cluster_list = sequential_clustering(singleton_list, 15)
    #print "Displaying", len(cluster_list), "sequential clusters"

    #cluster_list = closest_pairs_and_clustering_algorithms.hierarchical_clustering(singleton_list, 9)
    #print "Displaying", len(cluster_list), "hierarchical clusters"

    cluster_list = closest_pairs_and_clustering_algorithms.kmeans_clustering(
        singleton_list, 9, 5)
    print "Displaying", len(cluster_list), "k-means clusters"

    # draw the clusters using matplotlib or simplegui
    if DESKTOP:
        #alg_clusters_matplotlib.plot_clusters(data_table, cluster_list, False)
        alg_clusters_matplotlib.plot_clusters(data_table, cluster_list,
                                              True)  #add cluster centers
    else:
        alg_clusters_simplegui.PlotClusters(
            data_table,
            cluster_list)  # use toggle in GUI to add cluster centers
def test_kmeans():
    """
    Test for k-means clustering
    kmeans_clustering should not mutate cluster_list, but make a new copy of each test anyways
    """

    # load small data table
    print
    print "Testing kmeans_clustering on 24 county set"
    data_24_table = load_data_table(DATA_24_URL)

    kmeansdata_24 = [[15, 1, set([('34017', '36061'), ('06037',), ('06059',), ('36047',), ('36081',), ('06071', '08031'), ('36059',), ('36005',), ('55079',), ('34013', '34039'), ('06075',), ('01073',), ('06029',), ('41051', '41067'), ('11001', '24510', '51013', '51760', '51840', '54009')])],
                     [15, 3, set([('34017', '36061'), ('06037', '06059'), ('06071',), ('36047',), ('36081',), ('08031',), ('36059',), ('36005',), ('55079',), ('34013', '34039'), ('06075',), ('01073',), ('06029',), ('41051', '41067'), ('11001', '24510', '51013', '51760', '51840', '54009')])],
                     [15, 5, set([('34017', '36061'), ('06037', '06059'), ('06071',), ('36047',), ('36081',), ('08031',), ('36059',), ('36005',), ('55079',), ('34013', '34039'), ('06075',), ('01073',), ('06029',), ('41051', '41067'), ('11001', '24510', '51013', '51760', '51840', '54009')])],
                     [10, 1, set([('34017', '36061'), ('06029', '06037', '06075'), ('11001', '24510', '34013', '34039', '51013', '51760', '51840', '54009'), ('06059',), ('36047',), ('36081',), ('06071', '08031', '41051', '41067'), ('36059',), ('36005',), ('01073', '55079')])],
                     [10, 3, set([('34013', '34017', '36061'), ('06029', '06037', '06075'), ('08031', '41051', '41067'), ('06059', '06071'), ('34039', '36047'), ('36081',), ('36059',), ('36005',), ('01073', '55079'), ('11001', '24510', '51013', '51760', '51840', '54009')])],
                     [10, 5, set([('34013', '34017', '36061'), ('06029', '06037', '06075'), ('08031', '41051', '41067'), ('06059', '06071'), ('34039', '36047'), ('36081',), ('36059',), ('36005',), ('01073', '55079'), ('11001', '24510', '51013', '51760', '51840', '54009')])],
                     [5, 1, set([('06029', '06037', '06075'), ('01073', '11001', '24510', '34013', '34017', '34039', '36047', '51013', '51760', '51840', '54009', '55079'), ('06059',), ('36005', '36059', '36061', '36081'), ('06071', '08031', '41051', '41067')])],
                     [5, 3, set([('06029', '06037', '06075'), ('11001', '24510', '34013', '34017', '34039', '36005', '36047', '36059', '36061', '36081', '51013'), ('08031', '41051', '41067'), ('06059', '06071'), ('01073', '51760', '51840', '54009', '55079')])],
                     [5, 5, set([('06029', '06037', '06075'), ('08031', '41051', '41067'), ('06059', '06071'), ('01073', '55079'), ('11001', '24510', '34013', '34017', '34039', '36005', '36047', '36059', '36061', '36081', '51013', '51760', '51840', '54009')])]]

    suite = poc_simpletest.TestSuite()

    for num_clusters, num_iterations, expected_county_tuple in kmeansdata_24:

        # build initial list of clusters for each test since mutation is allowed
        cluster_list = []
        for idx in range(len(data_24_table)):
            line = data_24_table[idx]
            cluster_list.append(alg_cluster.Cluster(set([line[0]]), line[1], line[2], line[3], line[4]))

        # compute student answer
        student_clustering = student.kmeans_clustering(cluster_list, num_clusters, num_iterations)
        student_county_tuple = set_of_county_tuples(student_clustering)

        # Prepare test
        error_message = "Testing kmeans_custering on 24 county table, num_clusters = " + str(num_clusters)
        error_message += " num_iterations = " + str(num_iterations)
        error_message += "\nStudent county tuples: " + str(student_county_tuple)
        error_message += "\nExpected county tuples: " + str(expected_county_tuple)
        suite.run_test(student_county_tuple == expected_county_tuple, True, error_message)

    suite.report_results()
def test_kmeans():
    """
    Test for k-means clustering
    kmeans_clustering should not mutate cluster_list, but make a new copy of each test anyways
    """
    
    # load small data table
    print
    print "Testing kmeans_clustering on 24 county set"
    data_24_table = load_data_table(DATA_24_URL)
        
    kmeansdata_24 = [[15, 1, set([('34017', '36061'), ('06037',), ('06059',), ('36047',), ('36081',), ('06071', '08031'), ('36059',), ('36005',), ('55079',), ('34013', '34039'), ('06075',), ('01073',), ('06029',), ('41051', '41067'), ('11001', '24510', '51013', '51760', '51840', '54009')])], 
                     [15, 3, set([('34017', '36061'), ('06037', '06059'), ('06071',), ('36047',), ('36081',), ('08031',), ('36059',), ('36005',), ('55079',), ('34013', '34039'), ('06075',), ('01073',), ('06029',), ('41051', '41067'), ('11001', '24510', '51013', '51760', '51840', '54009')])],
                     [15, 5, set([('34017', '36061'), ('06037', '06059'), ('06071',), ('36047',), ('36081',), ('08031',), ('36059',), ('36005',), ('55079',), ('34013', '34039'), ('06075',), ('01073',), ('06029',), ('41051', '41067'), ('11001', '24510', '51013', '51760', '51840', '54009')])],
                     [10, 1, set([('34017', '36061'), ('06029', '06037', '06075'), ('11001', '24510', '34013', '34039', '51013', '51760', '51840', '54009'), ('06059',), ('36047',), ('36081',), ('06071', '08031', '41051', '41067'), ('36059',), ('36005',), ('01073', '55079')])],
                     [10, 3, set([('34013', '34017', '36061'), ('06029', '06037', '06075'), ('08031', '41051', '41067'), ('06059', '06071'), ('34039', '36047'), ('36081',), ('36059',), ('36005',), ('01073', '55079'), ('11001', '24510', '51013', '51760', '51840', '54009')])],
                     [10, 5, set([('34013', '34017', '36061'), ('06029', '06037', '06075'), ('08031', '41051', '41067'), ('06059', '06071'), ('34039', '36047'), ('36081',), ('36059',), ('36005',), ('01073', '55079'), ('11001', '24510', '51013', '51760', '51840', '54009')])],
                     [5, 1, set([('06029', '06037', '06075'), ('01073', '11001', '24510', '34013', '34017', '34039', '36047', '51013', '51760', '51840', '54009', '55079'), ('06059',), ('36005', '36059', '36061', '36081'), ('06071', '08031', '41051', '41067')])],
                     [5, 3, set([('06029', '06037', '06075'), ('11001', '24510', '34013', '34017', '34039', '36005', '36047', '36059', '36061', '36081', '51013'), ('08031', '41051', '41067'), ('06059', '06071'), ('01073', '51760', '51840', '54009', '55079')])],
                     [5, 5, set([('06029', '06037', '06075'), ('08031', '41051', '41067'), ('06059', '06071'), ('01073', '55079'), ('11001', '24510', '34013', '34017', '34039', '36005', '36047', '36059', '36061', '36081', '51013', '51760', '51840', '54009')])]]    
        
    suite = poc_simpletest.TestSuite()    
    
    for num_clusters, num_iterations, expected_county_tuple in kmeansdata_24:
        
        # build initial list of clusters for each test since mutation is allowed
        cluster_list = []
        for idx in range(len(data_24_table)):
            line = data_24_table[idx]
            cluster_list.append(alg_cluster.Cluster(set([line[0]]), line[1], line[2], line[3], line[4]))

        # compute student answer
        student_clustering = student.kmeans_clustering(cluster_list, num_clusters, num_iterations)
        student_county_tuple = set_of_county_tuples(student_clustering)
        
        # Prepare test
        error_message = "Testing kmeans_custering on 24 county table, num_clusters = " + str(num_clusters)
        error_message += " num_iterations = " + str(num_iterations)
        error_message += "\nStudent county tuples: " + str(student_county_tuple)
        error_message += "\nExpected county tuples: " + str(expected_county_tuple)
        suite.run_test(student_county_tuple == expected_county_tuple, True, error_message)   

    suite.report_results()
Example #4
0
def calculate_distortion():
    data_table = load_data_table(DATA_111_URL)

    singleton_list = []
    for line in data_table:
        singleton_list.append(
            alg_cluster.Cluster(set([line[0]]), line[1], line[2], line[3],
                                line[4]))

    cluster_list_hierarchical = closest_pairs_and_clustering_algorithms.hierarchical_clustering(
        singleton_list, 9)
    cluster_list_kmeans = closest_pairs_and_clustering_algorithms.kmeans_clustering(
        singleton_list, 9, 5)

    distortion_hierarchical = closest_pairs_and_clustering_algorithms.compute_distortion(
        cluster_list_hierarchical, data_table)
    distortion_kmeans = closest_pairs_and_clustering_algorithms.compute_distortion(
        cluster_list_kmeans, data_table)

    print "distortion_hierarchical: ", distortion_hierarchical
    print "distortion_kmeans: ", distortion_kmeans
Example #5
0
def compare_distortion():
    distortion_hierarchical_111 = []
    distortion_kmeans_111 = []

    distortion_hierarchical_290 = []
    distortion_kmeans_290 = []

    distortion_hierarchical_896 = []
    distortion_kmeans_896 = []

    data_table = load_data_table(DATA_111_URL)

    singleton_list = []
    for line in data_table:
        singleton_list.append(
            alg_cluster.Cluster(set([line[0]]), line[1], line[2], line[3],
                                line[4]))

    for num in xrange(6, 21):
        cluster_list_hierarchical = closest_pairs_and_clustering_algorithms.hierarchical_clustering(
            singleton_list[:], num)
        cluster_list_kmeans = closest_pairs_and_clustering_algorithms.kmeans_clustering(
            singleton_list[:], num, 5)

        distortion_hierarchical_111.append(
            closest_pairs_and_clustering_algorithms.compute_distortion(
                cluster_list_hierarchical, data_table))
        distortion_kmeans_111.append(
            closest_pairs_and_clustering_algorithms.compute_distortion(
                cluster_list_kmeans, data_table))

    print "distortion_hierarchical_111: ", distortion_hierarchical_111
    print "distortion_kmeans_111: ", distortion_kmeans_111

    data_table = load_data_table(DATA_290_URL)

    singleton_list = []
    for line in data_table:
        singleton_list.append(
            alg_cluster.Cluster(set([line[0]]), line[1], line[2], line[3],
                                line[4]))

    for num in xrange(6, 21):
        cluster_list_hierarchical = closest_pairs_and_clustering_algorithms.hierarchical_clustering(
            singleton_list[:], num)
        cluster_list_kmeans = closest_pairs_and_clustering_algorithms.kmeans_clustering(
            singleton_list[:], num, 5)

        distortion_hierarchical_290.append(
            closest_pairs_and_clustering_algorithms.compute_distortion(
                cluster_list_hierarchical, data_table))
        distortion_kmeans_290.append(
            closest_pairs_and_clustering_algorithms.compute_distortion(
                cluster_list_kmeans, data_table))

    print "distortion_hierarchical_290: ", distortion_hierarchical_290
    print "distortion_kmeans_290: ", distortion_kmeans_290

    data_table = load_data_table(DATA_896_URL)

    singleton_list = []
    for line in data_table:
        singleton_list.append(
            alg_cluster.Cluster(set([line[0]]), line[1], line[2], line[3],
                                line[4]))

    for num in xrange(6, 21):
        cluster_list_hierarchical = closest_pairs_and_clustering_algorithms.hierarchical_clustering(
            singleton_list[:], num)
        cluster_list_kmeans = closest_pairs_and_clustering_algorithms.kmeans_clustering(
            singleton_list[:], num, 5)

        distortion_hierarchical_896.append(
            closest_pairs_and_clustering_algorithms.compute_distortion(
                cluster_list_hierarchical, data_table))
        distortion_kmeans_896.append(
            closest_pairs_and_clustering_algorithms.compute_distortion(
                cluster_list_kmeans, data_table))

    print "distortion_hierarchical_896: ", distortion_hierarchical_896
    print "distortion_kmeans_896: ", distortion_kmeans_896