Example #1
0
    data, labels, lengths, test_size=FLAGS.test_size, random_state=22)
# Batch iterator
train_data = data_helper.batch_iter(x_train, y_train, train_lengths,
                                    FLAGS.batch_size, FLAGS.num_epochs)

# Train
# =============================================================================

with tf.Graph().as_default():
    with tf.Session() as sess:
        if FLAGS.clf == 'cnn':
            classifier = cnn_clf(FLAGS)
        elif FLAGS.clf == 'lstm' or FLAGS.clf == 'blstm':
            classifier = rnn_clf(FLAGS)
        elif FLAGS.clf == 'clstm':
            classifier = clstm_clf(FLAGS)
        else:
            raise ValueError('clf should be one of [cnn, lstm, blstm, clstm]')

        # Train procedure
        global_step = tf.Variable(0, name='global_step', trainable=False)
        # Learning rate decay
        starter_learning_rate = FLAGS.learning_rate
        learning_rate = tf.train.exponential_decay(starter_learning_rate,
                                                   global_step,
                                                   FLAGS.decay_steps,
                                                   FLAGS.decay_rate,
                                                   staircase=True)
        optimizer = tf.train.AdamOptimizer(learning_rate)
        grads_and_vars = optimizer.compute_gradients(classifier.cost)
        train_op = optimizer.apply_gradients(grads_and_vars,
def main(_):
    if FLAGS.clf == 'lstm':
        FLAGS.embedding_size = FLAGS.hidden_size
    elif FLAGS.clf == 'clstm':
        FLAGS.hidden_size = len(
            FLAGS.filter_sizes.split(",")) * FLAGS.num_filters

    # Output files directory
    timestamp = str(int(time.time()))
    model_dir = os.path.join(os.path.curdir, 'model')
    params_dir = os.path.join(os.path.curdir, 'params')
    if not os.path.exists(params_dir):
        os.makedirs(params_dir)

    # Load and save data
    # =============================================================================

    data, labels, lengths, vocab_processor = data_helper.load_data(
        file_path=FLAGS.data_file,
        sw_path=FLAGS.stop_word_file,
        min_frequency=FLAGS.min_frequency,
        max_length=FLAGS.max_length,
        language=FLAGS.language,
        shuffle=True)

    # Save vocabulary processor
    vocab_processor.save(os.path.join(params_dir, 'vocab'))

    FLAGS.vocab_size = len(vocab_processor.vocabulary_._mapping)

    FLAGS.max_length = vocab_processor.max_document_length

    params = FLAGS.flag_values_dict()
    # Print parameters
    model = params['clf']
    if model == 'cnn':
        del params['hidden_size']
        del params['num_layers']
    elif model == 'lstm' or model == 'blstm':
        del params['num_filters']
        del params['filter_sizes']
        params['embedding_size'] = params['hidden_size']
    elif model == 'clstm':
        params['hidden_size'] = len(
            list(map(
                int,
                params['filter_sizes'].split(",")))) * params['num_filters']

    params_dict = sorted(params.items(), key=lambda x: x[0])
    print('Parameters:')
    for item in params_dict:
        print('{}: {}'.format(item[0], item[1]))
    print('')

    # Save parameters to file
    params_file = open(os.path.join(params_dir, 'params.pkl'), 'wb')
    pkl.dump(params, params_file, True)
    params_file.close()

    # Simple Cross validation
    x_train, x_valid, y_train, y_valid, train_lengths, valid_lengths = train_test_split(
        data, labels, lengths, test_size=FLAGS.test_size, random_state=22)
    # Batch iterator
    train_data = data_helper.batch_iter(x_train, y_train, train_lengths,
                                        FLAGS.batch_size, FLAGS.num_epochs)

    # Train
    # =============================================================================

    with tf.Graph().as_default():
        with tf.Session() as sess:
            if FLAGS.clf == 'cnn':
                classifier = cnn_clf(FLAGS)
            elif FLAGS.clf == 'lstm' or FLAGS.clf == 'blstm':
                classifier = rnn_clf(FLAGS)
            elif FLAGS.clf == 'clstm':
                classifier = clstm_clf(FLAGS)
            else:
                raise ValueError(
                    'clf should be one of [cnn, lstm, blstm, clstm]')

            # Train procedure
            global_step = tf.Variable(0, name='global_step', trainable=False)
            # Learning rate decay
            starter_learning_rate = FLAGS.learning_rate
            learning_rate = tf.train.exponential_decay(starter_learning_rate,
                                                       global_step,
                                                       FLAGS.decay_steps,
                                                       FLAGS.decay_rate,
                                                       staircase=True)
            optimizer = tf.train.AdamOptimizer(learning_rate)
            grads_and_vars = optimizer.compute_gradients(classifier.cost)
            train_op = optimizer.apply_gradients(grads_and_vars,
                                                 global_step=global_step,
                                                 name='op_to_store')

            # Summaries
            loss_summary = tf.summary.scalar('Loss', classifier.cost)
            accuracy_summary = tf.summary.scalar('Accuracy',
                                                 classifier.accuracy)

            # Train summary
            train_summary_op = tf.summary.merge_all()
            train_summary_dir = os.path.join(os.path.curdir, 'summaries',
                                             'train')
            train_summary_writer = tf.summary.FileWriter(
                train_summary_dir, sess.graph)

            # Validation summary
            valid_summary_op = tf.summary.merge_all()
            valid_summary_dir = os.path.join(os.path.curdir, 'summaries',
                                             'valid')
            valid_summary_writer = tf.summary.FileWriter(
                valid_summary_dir, sess.graph)

            saver = tf.train.Saver(max_to_keep=FLAGS.num_checkpoint)

            sess.run(tf.global_variables_initializer())

            def run_step(input_data, is_training=True):
                """Run one step of the training process."""
                input_x, input_y, sequence_length = input_data

                fetches = {
                    'step': global_step,
                    'cost': classifier.cost,
                    'accuracy': classifier.accuracy,
                    'learning_rate': learning_rate
                }
                feed_dict = {
                    classifier.input_x: input_x,
                    classifier.input_y: input_y
                }

                if FLAGS.clf != 'cnn':
                    fetches['final_state'] = classifier.final_state
                    feed_dict[classifier.batch_size] = len(input_x)
                    feed_dict[classifier.sequence_length] = sequence_length

                if is_training:
                    fetches['train_op'] = train_op
                    fetches['summaries'] = train_summary_op
                    feed_dict[classifier.keep_prob] = FLAGS.keep_prob
                else:
                    fetches['summaries'] = valid_summary_op
                    feed_dict[classifier.keep_prob] = 1.0

                vars = sess.run(fetches, feed_dict)
                step = vars['step']
                cost = vars['cost']
                accuracy = vars['accuracy']
                summaries = vars['summaries']

                # Write summaries to file
                if is_training:
                    train_summary_writer.add_summary(summaries, step)
                else:
                    valid_summary_writer.add_summary(summaries, step)

                time_str = datetime.datetime.now().isoformat()
                print("{}: step: {}, loss: {:g}, accuracy: {:g}".format(
                    time_str, step, cost, accuracy))

                return accuracy

            print('Start training ...')

            for train_input in train_data:
                input_x, input_y, _ = train_input
                run_step(train_input, is_training=True)
                current_step = tf.train.global_step(sess, global_step)

                if current_step % FLAGS.evaluate_every_steps == 0:
                    print('\nValidation')
                    run_step((x_valid, y_valid, valid_lengths),
                             is_training=False)
                    print('')

                if current_step % FLAGS.save_every_steps == 0:
                    # saver = tf.train.Saver()
                    # save_path = saver.save(sess, os.path.join('./model2', 'clf'),current_step)
                    if os.path.exists(model_dir):
                        os.system('rm -rf ' + model_dir)
                    # prediction_signature = tf.saved_model.signature_def_utils.predict_signature_def(
                    # inputs={"input_x": classifier.input_x},outputs={"input_y":classifier.input_y},
                    # )
                    # builder = tf.saved_model.builder.SavedModelBuilder(os.path.join(model_dir,timestamp))
                    # # 构造模型保存的内容,指定要保存的 session,特定的 tag,
                    # # 输入输出信息字典,额外的信息
                    # builder.add_meta_graph_and_variables(sess,
                    #                                 [tf.saved_model.SERVING],
                    #                                 signature_def_map={"classification":prediction_signature},
                    #                                 # assets_collection={"params":params,"vocab":vocab_processor}
                    #                                 )
                    # builder.save()
                    tf.saved_model.simple_save(
                        sess,
                        os.path.join(model_dir, timestamp),
                        inputs={"input_x": classifier.input_x},
                        outputs={"input_y": classifier.input_y})

            print('\nAll the files have been saved to {}\n'.format(model_dir))
Example #3
0
elif model == 'cnn':
    config = cnn_config()
data_loader = DataLoader(config)
# Output files directory
timestamp = str(int(time.time()))
outdir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
if not os.path.exists(outdir):
    os.makedirs(outdir)

# Train
# =============================================================================

with tf.Graph().as_default():
    with tf.Session() as sess:
        if model == 'clstm':
            classifier = clstm_clf(config)
        elif model == 'cnn':
            classifier = cnn_clf(config)

        # Train procedure
        global_step = tf.Variable(0, name='global_step', trainable=False)
        # Learning rate decay
        starter_learning_rate = config.learning_rate
        learning_rate = tf.train.exponential_decay(starter_learning_rate,
                                                   global_step,
                                                   config.decay_steps,
                                                   config.decay_rate,
                                                   staircase=True)
        optimizer = tf.train.AdamOptimizer(learning_rate)
        grads_and_vars = optimizer.compute_gradients(classifier.cost)
        train_op = optimizer.apply_gradients(grads_and_vars,
    embedding_size = params['embedding_size']
    filter_sizes = params['filter_sizes']
    num_filters = params['num_filters']
    hidden_size = params['hidden_size']
    num_layers = params['num_layers']
    l2_reg_lambda = params['l2_reg_lambda']
    batch_size = params['batch_size']
    keep_prob = 1.0


with tf.Graph().as_default():
    session_conf = tf.ConfigProto(allow_soft_placement=True,
                                  log_device_placement=False)
    sess = tf.Session(config=session_conf)
    with sess.as_default():
        clstm = clstm_clf(config)
        # sess.run(tf.global_variables_initializer())
        # Restore model
        checkpoint_file = os.path.join(FLAGS.file_path, 'model/',
                                       FLAGS.model_file)
        saver = tf.train.Saver(tf.all_variables())
        saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
        saver.restore(sess, checkpoint_file)

        def do_predict(x_batch, real_len):
            def predict_step(x_batch, real_len):
                feed_dict = {
                    clstm.input_x: x_batch,
                    clstm.keep_prob: config.keep_prob,
                    clstm.batch_size: len(x_batch),
                    clstm.sequence_length: real_len