'pretrain_net': args.pretrain_net, 'freeze_pretrain_cnn': args.freeze_pretrain_cnn, 'squash_ctrl_params': args.squash_ctrl_params, 'clip_gradient': args.clip_gradient, 'fixed_order': args.fixed_order, 'ctrl_rnn_inp_struct': "attn", 'num_ctrl_rnn_iter': args.num_ctrl_rnn_iter, 'num_glimpse_mlp_layers': args.num_glimpse_mlp_layers, 'fixed_var': args.fixed_var, 'use_iou_box': args.use_iou_box, 'dynamic_var': args.dynamic_var, 'add_d_out': args.add_d_out, 'add_y_out': args.add_y_out, 'rnd_hflip': rnd_hflip, 'rnd_vflip': rnd_vflip, 'rnd_transpose': rnd_transpose, 'rnd_colour': rnd_colour, 'num_semantic_classes': args.num_semantic_classes } return model_opt if __name__ == '__main__': parsers = { 'default': TrainArgsParser(), 'data': DataArgsParser(), 'model': BoxModelArgsParser() } BoxExperiment.create_from_main('box_model', parsers=parsers, description='training').run()
for ii in range(y_out.shape[0]): idx = inp['idx_map'][ii] group = h5f[self.dataset.get_str_id(idx)] if 'instance_pred' in group: del group['instance_pred'] for ins in range(y_out.shape[1]): y_out_arr = y_out[ii, ins] y_out_arr = (y_out_arr * 255).astype('uint8') y_out_str = cv2.imencode('.png', y_out_arr)[1] group['instance_pred/{:02d}'.format(ins)] = y_out_str if 'score_pred' in group: del group['score_pred'] group['score_pred'] = s_out[ii] class PackExperiment(EvalExperimentBase): def get_runner(self, split): return PackRunner(self.sess, self.model, self.dataset[split], self.opt, self.model_opt) def get_model(self): self.model_opt['use_knob'] = False return get_model(self.model_opt) if __name__ == '__main__': parsers = {'default': EvalArgsParser(), 'data': DataArgsParser()} PackExperiment.create_from_main( 'ris_pack', parsers=parsers, description='Pack ris output').run()
def main(): parsers = {'default': EvalArgsParser(), 'data': DataArgsParser()} FGPackExperiment.create_from_main('fg_pack', parsers=parsers, description='Pack fg output').run()
def main(): parsers = {'default': MyEvalArgsParser(), 'data': DataArgsParser()} EvalExperiment.create_from_main('eval', parsers=parsers, description='Evaluate output').run()
def main(): parsers = {'default': FGEvalArgsParser(), 'data': DataArgsParser()} FGEvalExperiment.create_from_main('fg_eval', parsers=parsers, description='Eval fg output').run()
def main(): parsers = {'default': CityscapesEvalArgsParser(), 'data': DataArgsParser()} CityscapesEvalExperiment.create_from_main( 'ris_pp_eval', parsers=parsers, description='Eval ris pp output').run()