def experiment(data_name, filter_list, bit_depth, sigma, kernel_size):
    # select data
    dc = get_data_container(
        data_name,
        use_shuffle=True,
        use_normalize=True,
    )

    # train the model
    classifier = ExtraTreeClassifier(
        criterion='gini',
        splitter='random',
    )
    mc = ModelContainerTree(classifier, dc)
    mc.fit()

    # no more than 1000 samples are required
    x = dc.x_test
    y = dc.y_test
    if len(x) > 1000:
        x = x[:1000]
        y = y[:1000]

    accuracy = mc.evaluate(x, y)
    logger.info('Accuracy on clean: %f', accuracy)

    squeezer = FeatureSqueezingTree(
        mc,
        filter_list,
        bit_depth=bit_depth,
        sigma=sigma,
        kernel_size=kernel_size,
        pretrained=True,
    )
    squeezer.fit()
    blocked_indices = squeezer.detect(x)
    logger.info('Blocked %d/%d samples on clean',
                len(blocked_indices), len(y))
    num_blk_clean = len(blocked_indices)

    # generate adversarial examples
    art_classifier = SklearnClassifier(classifier)
    try:
        attack = DecisionTreeAttack(art_classifier)
        adv = attack.generate(x)
    except IndexError as error:
        # Output expected IndexErrors.
        logger.error(error)
        return num_blk_clean, -1

    accuracy = mc.evaluate(adv, y)
    logger.info('Accuracy on DecisionTreeAttack: %f', accuracy)
    blocked_indices = squeezer.detect(adv)
    logger.info('Blocked %d/%d samples on DecisionTreeAttack',
                len(blocked_indices), len(adv))
    num_blk_adv = len(blocked_indices)
    return num_blk_clean, num_blk_adv
def experiment(data_name, params):
    # select data
    dc = get_data_container(
        data_name,
        use_shuffle=True,
        use_normalize=True,
    )

    # train the model
    classifier = ExtraTreeClassifier(
        criterion='gini',
        splitter='random',
    )
    mc = ModelContainerTree(classifier, dc)
    mc.fit()

    # train Applicability Domain
    ad = ApplicabilityDomainContainer(
        mc, mc.hidden_model, **params)
    ad.fit()

    # no more than 1000 samples are required
    x = dc.x_test
    y = dc.y_test
    if len(x) > 1000:
        x = x[:1000]
        y = y[:1000]

    accuracy = mc.evaluate(x, y)
    logger.info('Accuracy on clean: %f', accuracy)
    blocked_indices = ad.detect(x)
    logger.info('Blocked %d/%d samples on clean',
                len(blocked_indices), len(y))
    num_blk_clean = len(blocked_indices)

    # generate adversarial examples
    art_classifier = SklearnClassifier(classifier)
    try:
        attack = DecisionTreeAttack(art_classifier)
        adv = attack.generate(x)
    except IndexError as error:
        # Output expected IndexErrors.
        logger.error(error)
        return num_blk_clean, -1

    accuracy = mc.evaluate(adv, y)
    logger.info('Accuracy on DecisionTreeAttack: %f', accuracy)
    blocked_indices = ad.detect(adv)
    logger.info('Blocked %d/%d samples on DecisionTreeAttack',
                len(blocked_indices), len(adv))
    num_blk_adv = len(blocked_indices)
    return num_blk_clean, num_blk_adv
def main():
    parser = ap.ArgumentParser()
    parser.add_argument(
        '-m', '--model', type=str, required=True,
        help='a file which contains a pretrained model. The filename should in "<model>_<dataset>_e<max epochs>[_<date>].pt" format')
    parser.add_argument(
        '-p', '--param', type=str, required=True,
        help='a JSON config file which contains the parameters for the attacks')
    parser.add_argument(
        '-n', '--number', type=int, default=1000,
        help='the number of adv. examples want to generate. (if more than test set, it uses all test examples.)')
    parser.add_argument(
        '-s', '--seed', type=int, default=4096,
        help='the seed for random number generator')
    parser.add_argument(
        '-v', '--verbose', action='store_true', default=False,
        help='set logger level to debug')
    parser.add_argument(
        '-l', '--savelog', action='store_true', default=False,
        help='save logging file')
    parser.add_argument(
        '-w', '--overwrite', action='store_true', default=False,
        help='overwrite the existing file')
    parser.add_argument(
        '-B', '--bim', action='store_true', default=False,
        help='Apply BIM attack')
    parser.add_argument(
        '-C', '--carlini', action='store_true', default=False,
        help='Apply Carlini L2 attack')
    parser.add_argument(
        '-D', '--deepfool', action='store_true', default=False,
        help='Apply DeepFool attack')
    parser.add_argument(
        '-F', '--fgsm', action='store_true', default=False,
        help='Apply FGSM attack')
    parser.add_argument(
        '-S', '--saliency', action='store_true', default=False,
        help='Apply Saliency Map attack')
    args = parser.parse_args()
    model_file = args.model
    attack_param_file = args.param
    num_adv = args.number
    seed = args.seed
    verbose = args.verbose
    save_log = args.savelog
    overwrite = args.overwrite

    # Which attack should apply?
    # use binary encoding for attacks
    my_attacks = np.zeros(5, dtype=np.int8)
    attack_list = np.array(
        ['FGSM', 'BIM', 'Carlini', 'DeepFool', 'Saliency'])
    my_attacks[0] = 1 if args.fgsm else 0
    my_attacks[1] = 1 if args.bim else 0
    my_attacks[2] = 1 if args.carlini else 0
    my_attacks[3] = 1 if args.deepfool else 0
    my_attacks[4] = 1 if args.saliency else 0
    selected_attacks = attack_list[np.where(my_attacks == 1)[0]]

    # check file
    for f in [model_file, attack_param_file]:
        if not os.path.exists(f):
            raise FileNotFoundError('{} does not exist!'.format(f))
    dirname = os.path.dirname(model_file)
    model_name, dname = parse_model_filename(model_file)

    with open(attack_param_file) as param_json:
        att_params = json.load(param_json)

    # set logging config. Run this before logging anything!
    set_logging('attack', dname, verbose, save_log)

    # show parameters
    print('[attack] Start generating {} adv. samples from {} model...'.format(
        num_adv, model_name))
    logger.info('Start at   : %s', get_time_str())
    logger.info('RECEIVED PARAMETERS:')
    logger.info('model file :%s', model_file)
    logger.info('model      :%s', model_name)
    logger.info('dataset    :%s', dname)
    logger.info('params     :%s', attack_param_file)
    logger.info('num_adv    :%r', num_adv)
    logger.info('seed       :%d', seed)
    logger.info('verbose    :%r', verbose)
    logger.info('save_log   :%r', save_log)
    logger.info('overwrite  :%r', overwrite)
    logger.info('dirname    :%r', dirname)
    logger.info('attacks    :%s', ', '.join(selected_attacks))

    if len(selected_attacks) == 0:
        logger.warning('No attack is selected. Exit.')
        sys.exit(0)

    # reset seed
    master_seed(seed)

    # set DataContainer and ModelContainer
    dc = get_data_container(dname)
    Model = get_model(model_name)
    # there models require extra keyword arguments
    if dname in ('BankNote', 'HTRU2', 'Iris', 'WheatSeed'):
        num_classes = dc.num_classes
        num_features = dc.dim_data[0]
        kwargs = {
            'num_features': num_features,
            'hidden_nodes': num_features*4,
            'num_classes': num_classes,
        }
        model = Model(**kwargs)
    else:
        model = Model()
    logger.info('Use %s model', model.__class__.__name__)
    mc = ModelContainerPT(model, dc)
    mc.load(model_file)
    accuracy = mc.evaluate(dc.x_test, dc.y_test)
    logger.info('Accuracy on test set: %f', accuracy)

    run_attacks(mc,
                selected_attacks,
                att_params,
                num_adv,
                model_name + '_' + dname,
                overwrite)
Example #4
0
def main():
    parser = ap.ArgumentParser()
    parser.add_argument('-d',
                        '--dataset',
                        type=str,
                        required=True,
                        help='Name of the dataset')
    parser.add_argument(
        '-p',
        '--param',
        type=str,
        required=True,
        help='a JSON config file which contains the parameters for the attacks'
    )
    parser.add_argument('-s',
                        '--seed',
                        type=int,
                        default=4096,
                        help='the seed for random number generator')
    parser.add_argument('-v',
                        '--verbose',
                        action='store_true',
                        default=False,
                        help='set logger level to debug')
    parser.add_argument('-l',
                        '--savelog',
                        action='store_true',
                        default=False,
                        help='save logging file')
    parser.add_argument('-F',
                        '--fgsm',
                        action='store_true',
                        default=False,
                        help='Apply FGSM attack')
    parser.add_argument('-B',
                        '--bim',
                        action='store_true',
                        default=False,
                        help='Apply BIM attack')
    parser.add_argument('-D',
                        '--deepfool',
                        action='store_true',
                        default=False,
                        help='Apply DeepFool attack')
    parser.add_argument('-C',
                        '--carlini',
                        action='store_true',
                        default=False,
                        help='Apply Carlini L2 attack')
    args = parser.parse_args()
    data_name = args.dataset
    param_file = args.param
    seed = args.seed
    verbose = args.verbose
    save_log = args.savelog

    # set logging config. Run this before logging anything!
    set_logging(LOG_NAME, data_name, verbose, save_log)

    # Which attack should apply?
    attack_list = []
    if args.fgsm:
        attack_list.append('FGSM')
    if args.bim:
        attack_list.append('BIM')
    if args.deepfool:
        attack_list.append('DeepFool')
    if args.carlini:
        attack_list.append('Carlini')

    # Quit, if there is nothing to do.
    if len(attack_list) == 0:
        logger.warning('Neither received any filter nor any attack. Exit')
        sys.exit(0)

    if data_name in ('BankNote', 'HTRU2', 'Iris', 'WheatSeed'):
        model_name = 'IrisNN'
    if data_name == 'BreastCancerWisconsin':
        model_name = 'BCNN'

    y_file = os.path.join('save',
                          f'{model_name}_{data_name}_{attack_list[0]}_y.npy')
    attack_files = [
        os.path.join('save',
                     f'{model_name}_{data_name}_{attack_list[0]}_x.npy')
    ]
    for attack_name in attack_list:
        attack_files.append(
            os.path.join('save',
                         f'{model_name}_{data_name}_{attack_name}_adv.npy'))
    # the 1st file this the clean inputs
    attack_list = ['clean'] + attack_list

    # load parameters for Applicability Domain
    with open(param_file) as param_json:
        params = json.load(param_json)

    # show parameters
    print(f'[{LOG_NAME}] Running tree model...')
    logger.info('Start at    :%s', get_time_str())
    logger.info('RECEIVED PARAMETERS:')
    logger.info('model       :%s', model_name)
    logger.info('dataset     :%s', data_name)
    logger.info('param file  :%s', param_file)
    logger.info('seed        :%d', seed)
    logger.info('verbose     :%r', verbose)
    logger.info('save_log    :%r', save_log)
    logger.info('attacks     :%s', ', '.join(attack_list))
    logger.debug('params     :%s', str(params))

    # check files
    for file_name in [y_file] + attack_files:
        if not os.path.exists(file_name):
            logger.error('%s does not exist!', file_name)
            raise FileNotFoundError('{} does not exist!'.format(file_name))

    # reset seed
    master_seed(seed)

    # select data
    dc = get_data_container(
        data_name,
        use_shuffle=True,
        use_normalize=True,
    )

    # train the model
    classifier = ExtraTreeClassifier(
        criterion='gini',
        splitter='random',
    )
    mc = ModelContainerTree(classifier, dc)
    mc.fit()

    x = np.load(attack_files[0], allow_pickle=False)
    art_classifier = SklearnClassifier(classifier)
    attack = DecisionTreeAttack(art_classifier)
    adv = attack.generate(x)

    ad = ApplicabilityDomainContainer(mc, mc.hidden_model, **params)
    ad.fit()

    # generate adversarial examples
    y = np.load(y_file, allow_pickle=False)

    accuracy = mc.evaluate(adv, y)
    logger.info('Accuracy on DecisionTreeAttack set: %f', accuracy)
    blocked_indices = ad.detect(adv)
    logger.info('Blocked %d/%d samples on DecisionTreeAttack',
                len(blocked_indices), len(adv))

    # traverse other attacks
    for i in range(len(attack_list)):
        adv_file = attack_files[i]
        adv_name = attack_list[i]
        logger.debug('Load %s...', adv_file)
        adv = np.load(adv_file, allow_pickle=False)
        accuracy = mc.evaluate(adv, y)
        logger.info('Accuracy on %s set: %f', adv_name, accuracy)
        blocked_indices = ad.detect(adv, return_passed_x=False)
        logger.info('Blocked %d/%d samples on %s', len(blocked_indices),
                    len(adv), adv_name)
def main():
    parser = ap.ArgumentParser()
    parser.add_argument(
        '-a',
        '--adv',
        type=str,
        required=True,
        help=
        'file name for adv. examples. The name should in "<model>_<dataset>_<attack>_adv.npy" format'
    )
    parser.add_argument(
        '-p',
        '--param',
        type=str,
        required=True,
        help='a JSON config file which contains the parameters for the attacks'
    )
    parser.add_argument(
        '-m',
        '--model',
        type=str,
        required=True,
        help=
        'a file which contains a pretrained model. The filename should in "<model>_<dataset>_e<max epochs>[_<date>].pt" format'
    )
    parser.add_argument('-s',
                        '--seed',
                        type=int,
                        default=4096,
                        help='the seed for random number generator')
    parser.add_argument('-v',
                        '--verbose',
                        action='store_true',
                        default=False,
                        help='set logger level to debug')
    parser.add_argument('-l',
                        '--savelog',
                        action='store_true',
                        default=False,
                        help='save logging file')
    args = parser.parse_args()
    adv_file = args.adv
    param_file = args.param
    model_file = args.model
    seed = args.seed
    verbose = args.verbose
    save_log = args.savelog
    check_clean = True

    # build filenames from the root file
    postfix = ['adv', 'pred', 'x', 'y']
    data_files = [adv_file.replace('_adv', '_' + s) for s in postfix]
    model_name, dname = parse_model_filename(adv_file)

    # set logging config. Run this before logging anything!
    set_logging('defence_ad', dname, verbose, save_log)

    # check adv. examples and parameter config files
    for f in data_files[:2] + [param_file]:
        if not os.path.exists(f):
            logger.warning('%s does not exist. Exit.', f)
            sys.exit(0)
    # check clean samples
    for f in data_files[-2:]:
        if not os.path.exists(f):
            logger.warning(
                'Cannot load files for clean samples. Skip checking clean set.'
            )
            check_clean = False

    with open(param_file) as param_json:
        params = json.load(param_json)

    # show parameters
    print(
        '[defend_ad] Running applicability domain on {}...'.format(model_name))
    logger.info('Start at    : %s', get_time_str())
    logger.info('RECEIVED PARAMETERS:')
    logger.info('model file  :%s', model_file)
    logger.info('adv file    :%s', adv_file)
    logger.info('model       :%s', model_name)
    logger.info('dataset     :%s', dname)
    logger.info('param file  :%s', param_file)
    logger.info('seed        :%d', seed)
    logger.info('verbose     :%r', verbose)
    logger.info('save_log    :%r', save_log)
    logger.info('check_clean :%r', check_clean)
    logger.debug('params     : %s', str(params))

    # reset seed
    master_seed(seed)

    # set DataContainer and ModelContainer
    dc = get_data_container(dname)
    Model = get_model(model_name)
    # there models require extra keyword arguments
    if dname in ('BankNote', 'HTRU2', 'Iris', 'WheatSeed'):
        num_classes = dc.num_classes
        num_features = dc.dim_data[0]
        kwargs = {
            'num_features': num_features,
            'hidden_nodes': num_features * 4,
            'num_classes': num_classes,
        }
        model = Model(**kwargs)
    else:
        model = Model()
    logger.info('Use %s model', model.__class__.__name__)
    mc = ModelContainerPT(model, dc)

    mc.load(model_file)
    accuracy = mc.evaluate(dc.x_test, dc.y_test)
    logger.info('Accuracy on test set: %f', accuracy)

    # preform defence
    ad = ApplicabilityDomainContainer(mc,
                                      hidden_model=model.hidden_model,
                                      **params)
    ad.fit()

    result_prefix = [model_file] \
        + [adv_file] \
        + [params['k2']] \
        + [params['reliability']] \
        + [params['sample_ratio']] \
        + [params['confidence']] \
        + [params['kappa']] \
        + [params['disable_s2']]

    # check clean
    if check_clean:
        x = np.load(data_files[2], allow_pickle=False)
        y = np.load(data_files[3], allow_pickle=False)
        x_passed, blk_idx, blocked_counts = detect(ad, 'clean samples', x, y)
        result = result_prefix + ['clean'] + blocked_counts
        result_clean = '[result]' + ','.join([str(r) for r in result])

    # check adversarial examples
    adv = np.load(data_files[0], allow_pickle=False)
    pred = np.load(data_files[1], allow_pickle=False)
    adv_passed, adv_blk_idx, blocked_counts = detect(ad, 'adv. examples', adv,
                                                     pred)
    result = result_prefix + ['adv'] + blocked_counts
    result = '[result]' + ','.join([str(r) for r in result])
    if check_clean:
        logger.info(result_clean)
    logger.info(result)
def experiment(index, dname, mname, max_epochs, adv_file, res_file):
    # STEP 1: select data
    dc = get_data_container(dname, use_shuffle=True, use_normalize=True)
    Model = get_model(mname)
    model = Model()
    distill_model = Model()
    logger.info('Selected %s model', model.__class__.__name__)

    # STEP 2: train models
    mc = ModelContainerPT(model, dc)
    mc.fit(max_epochs=max_epochs, batch_size=BATCH_SIZE)
    accuracy = mc.evaluate(dc.x_test, dc.y_test)
    logger.info('Accuracy on test set: %f', accuracy)
    adv_res = [accuracy]

    # STEP 3: generate adversarial examples
    # no more than 1000 samples are required
    n = 1000 if len(dc.x_test) >= 1000 else len(dc.x_test)
    # idx = np.random.choice(len(dc.x_test), n, replace=False)
    # x = dc.x_test[idx]
    # y = dc.y_test[idx]
    x = dc.x_test[:n]
    y = dc.y_test[:n]
    accuracy = mc.evaluate(x, y)
    adv_res.append(accuracy)

    advs = np.zeros(
        tuple([len(ATTACK_LIST)] + list(x.shape)),
        dtype=np.float32)
    pred_advs = -np.ones(
        (len(ATTACK_LIST), n),
        dtype=np.int32)  # assign -1 as initial value
    pred_clean = mc.predict(x)

    advs[0] = x
    pred_advs[0] = pred_clean

    att_param_json = open(os.path.join(DIR_PATH, 'AttackParams.json'))
    att_params = json.load(att_param_json)

    for i, att_name in enumerate(ATTACK_LIST):
        # Clean set is only used in evaluation phase.
        if att_name == 'Clean':
            continue

        logger.debug('[%d]Running %s attack...', i, att_name)
        kwargs = att_params[att_name]
        logger.debug('%s params: %s', att_name, str(kwargs))
        Attack = get_attack(att_name)
        attack = Attack(mc, **kwargs)
        adv, pred_adv, x_clean, pred_clean_ = attack.generate(
            use_testset=False,
            x=x)
        assert np.all(pred_clean == pred_clean_)
        assert np.all(x == x_clean)
        logger.info('created %d adv examples using %s from %s',
                    len(advs[i]),
                    att_name,
                    dname)
        not_match = pred_adv != pred_clean
        success_rate = len(not_match[not_match == True]) / len(pred_clean)
        accuracy = mc.evaluate(adv, y)
        advs[i] = adv
        pred_advs[i] = pred_adv
        logger.info('Success rate of %s: %f', att_name, success_rate)
        logger.info('Accuracy on %s: %f', att_name, accuracy)
        adv_res.append(accuracy)
    adv_file.write(','.join([str(r) for r in adv_res]) + '\n')

    # STEP 4: train defences
    blocked_res = np.zeros(len(TITLE_RESULTS), dtype=np.int32)
    blocked_res[0] = index
    for def_name in DEFENCE_LIST:
        logger.debug('Running %s...', def_name)
        if def_name == 'AdvTraining':
            attack = BIMContainer(
                mc,
                eps=0.3,
                eps_step=0.1,
                max_iter=100,
                targeted=False)
            defence = AdversarialTraining(mc, [attack])
            defence.fit(max_epochs=max_epochs,
                        batch_size=BATCH_SIZE,
                        ratio=ADV_TRAIN_RATIO)
            block_attack(0, advs, defence, def_name, blocked_res)
        elif def_name == 'Destillation':
            defence = DistillationContainer(
                mc, distill_model, temperature=DISTILL_TEMP, pretrained=False)
            defence.fit(max_epochs=max_epochs, batch_size=BATCH_SIZE)
            block_attack(1, advs, defence, def_name, blocked_res)
        elif def_name == 'Squeezing':
            defence = FeatureSqueezing(
                mc,
                SQUEEZER_FILTER_LIST,
                bit_depth=SQUEEZER_DEPTH,
                sigma=SQUEEZER_SIGMA,
                kernel_size=SQUEEZER_KERNEL,
                pretrained=True,
            )
            defence.fit(max_epochs=max_epochs, batch_size=BATCH_SIZE)
            block_attack(2, advs, defence, def_name, blocked_res)
        elif def_name == 'AD':
            ad_param_file = open(AD_PARAM_FILE)
            ad_params = json.load(ad_param_file)
            logger.debug('AD params: %s', str(ad_params))
            defence = ApplicabilityDomainContainer(
                mc,
                hidden_model=model.hidden_model,
                **ad_params)
            defence.fit()
            block_attack(3, advs, defence, def_name, blocked_res)

    res_file.write(','.join([str(r) for r in blocked_res]) + '\n')
Example #7
0
def experiment(index, dname, max_epochs, adv_file, res_file):
    # STEP 1: select data
    dc = get_data_container(dname, use_shuffle=True, use_normalize=True)

    model = None
    if dname == 'BreastCancerWisconsin':
        model = BCNN()
        distill_model = BCNN()
    elif dname in ('BankNote', 'HTRU2', 'Iris', 'WheatSeed'):
        num_classes = dc.num_classes
        num_features = dc.dim_data[0]
        model = IrisNN(
            num_features=num_features,
            hidden_nodes=num_features*4,
            num_classes=num_classes
        )
        distill_model = IrisNN(
            num_features=num_features,
            hidden_nodes=num_features*4,
            num_classes=num_classes
        )
    if model is None:
        logger.error('Unrecognised dataset %s', dname)
    logger.info('Selected %s model', model.__class__.__name__)

    # STEP 2: train models
    mc = ModelContainerPT(model, dc)
    mc.fit(max_epochs=max_epochs, batch_size=BATCH_SIZE)
    accuracy = mc.evaluate(dc.x_test, dc.y_test)
    logger.info('Accuracy on test set: %f', accuracy)
    adv_res = [accuracy]

    # STEP 3: generate adversarial examples
    # no more than 1000 samples are required
    x = dc.x_test
    y = dc.y_test
    if len(x) > 1000:
        x = x[:1000]
        y = y[:1000]
    accuracy = mc.evaluate(x, y)
    adv_res.append(accuracy)

    advs = np.zeros((len(ATTACK_LIST), x.shape[0], x.shape[1]),
                    dtype=np.float32)
    pred_advs = -np.ones((len(ATTACK_LIST), len(y)),
                         dtype=np.int32)  # assign -1 as initial value
    pred_clean = mc.predict(x)

    advs[0] = x
    pred_advs[0] = pred_clean

    att_param_json = open(os.path.join(DIR_PATH, 'AttackParams.json'))
    att_params = json.load(att_param_json)

    for i, att_name in enumerate(ATTACK_LIST):
        # Clean set is only used in evaluation phase.
        if att_name == 'Clean':
            continue

        logger.debug('[%d]Running %s attack...', i, att_name)
        kwargs = att_params[att_name]
        logger.debug('%s params: %s', att_name, str(kwargs))
        Attack = get_attack(att_name)
        attack = Attack(mc, **kwargs)
        adv, pred_adv, x_clean, pred_clean_ = attack.generate(
            use_testset=False,
            x=x)
        assert np.all(pred_clean == pred_clean_)
        assert np.all(x == x_clean)
        logger.info('created %d adv examples using %s from %s',
                    len(advs[i]),
                    att_name,
                    dname)
        not_match = pred_adv != pred_clean
        success_rate = len(not_match[not_match == True]) / len(pred_clean)
        accuracy = mc.evaluate(adv, y)
        advs[i] = adv
        pred_advs[i] = pred_adv
        logger.info('Success rate of %s: %f', att_name, success_rate)
        logger.info('Accuracy on %s: %f', att_name, accuracy)
        adv_res.append(accuracy)
    adv_file.write(','.join([str(r) for r in adv_res]) + '\n')

    # STEP 4: train defences
    blocked_res = np.zeros(len(TITLE_RESULTS), dtype=np.int32)
    blocked_res[0] = index
    for def_name in DEFENCE_LIST:
        logger.debug('Running %s...', def_name)
        if def_name == 'AdvTraining':
            attack = BIMContainer(
                mc,
                eps=0.3,
                eps_step=0.1,
                max_iter=100,
                targeted=False)
            defence = AdversarialTraining(mc, [attack])
            defence.fit(max_epochs=max_epochs,
                        batch_size=BATCH_SIZE,
                        ratio=ADV_TRAIN_RATIO)
            block_attack(0, advs, defence, def_name, blocked_res)
        elif def_name == 'Destillation':
            if dname == 'Iris':
                temp = 10
            elif dname == 'BreastCancerWisconsin':
                temp = 2
            else:
                temp = 20
            defence = DistillationContainer(
                mc, distill_model, temperature=temp, pretrained=False)
            defence.fit(max_epochs=max_epochs, batch_size=BATCH_SIZE)
            block_attack(1, advs, defence, def_name, blocked_res)
        elif def_name == 'Squeezing':
            defence = FeatureSqueezing(
                mc,
                SQUEEZER_FILTER_LIST,
                bit_depth=SQUEEZER_DEPTH,
                sigma=SQUEEZER_SIGMA,
                pretrained=True,
            )
            defence.fit(max_epochs=max_epochs, batch_size=BATCH_SIZE)
            block_attack(2, advs, defence, def_name, blocked_res)
        elif def_name == 'AD':
            ad_param_file = open(AD_PARAM_FILE)
            # BreastCancer uses a different set of parameters
            if dname == 'BreastCancerWisconsin':
                param_file = os.path.join(DIR_PATH, 'AdParamsBC.json')
                ad_param_file = open(param_file)
            ad_params = json.load(ad_param_file)
            logger.debug('AD params: %s', str(ad_params))
            defence = ApplicabilityDomainContainer(
                mc,
                hidden_model=model.hidden_model,
                **ad_params)
            defence.fit()
            block_attack(3, advs, defence, def_name, blocked_res)

    res_file.write(','.join([str(r) for r in blocked_res]) + '\n')
Example #8
0
def main():
    parser = ap.ArgumentParser()
    parser.add_argument('-d',
                        '--dataset',
                        type=str,
                        required=True,
                        choices=get_dataset_list(),
                        help='the dataset you want to train')
    parser.add_argument(
        '-o',
        '--ofile',
        type=str,
        help='the filename will be used to store model parameters')
    parser.add_argument('-e',
                        '--epoch',
                        type=int,
                        default=5,
                        help='the number of max epochs for training')
    parser.add_argument('-b',
                        '--batchsize',
                        type=int,
                        default=128,
                        help='batch size')
    parser.add_argument('-s',
                        '--seed',
                        type=int,
                        default=4096,
                        help='the seed for random number generator')
    parser.add_argument('-H',
                        '--shuffle',
                        type=bool,
                        default=True,
                        help='shuffle the dataset')
    parser.add_argument(
        '-n',
        '--normalize',
        type=bool,
        default=True,
        help=
        'apply zero mean and scaling to the dataset (for numeral dataset only)'
    )
    parser.add_argument('-m',
                        '--model',
                        type=str,
                        choices=AVALIABLE_MODELS,
                        help='select a model to train the data')
    parser.add_argument('-v',
                        '--verbose',
                        action='store_true',
                        default=False,
                        help='set logger level to debug')
    parser.add_argument('-l',
                        '--savelog',
                        action='store_true',
                        default=False,
                        help='save logging file')
    parser.add_argument('-w',
                        '--overwrite',
                        action='store_true',
                        default=False,
                        help='overwrite the existing file')
    args = parser.parse_args()
    dname = args.dataset
    filename = args.ofile
    max_epochs = args.epoch
    batch_size = args.batchsize
    seed = args.seed
    use_shuffle = args.shuffle
    use_normalize = args.normalize
    model_name = args.model
    verbose = args.verbose
    save_log = args.savelog
    overwrite = args.overwrite

    # set logging config. Run this before logging anything!
    set_logging('train', dname, verbose, save_log)

    # show parameters
    print('[train] Start training {} model...'.format(model_name))
    logger.info('Start at      : %s', get_time_str())
    logger.info('RECEIVED PARAMETERS:')
    logger.info('dataset       :%s', dname)
    logger.info('filename      :%s', filename)
    logger.info('max_epochs    :%d', max_epochs)
    logger.info('batch_size    :%d', batch_size)
    logger.info('seed          :%d', seed)
    logger.info('use_shuffle   :%r', use_shuffle)
    logger.info('use_normalize :%r', use_normalize)
    logger.info('model_name    :%s', model_name)
    logger.info('verbose       :%r', verbose)
    logger.info('save_log      :%r', save_log)
    logger.info('overwrite     :%r', overwrite)

    master_seed(seed)

    # set DataContainer
    dc = get_data_container(
        dname,
        use_shuffle=use_shuffle,
        use_normalize=use_normalize,
    )

    # select a model
    model = None
    if model_name is not None:
        Model = models.get_model(model_name)
        model = Model()
    else:
        if dname == 'MNIST':
            model = models.MnistCnnV2()
        elif dname == 'CIFAR10':
            model = models.CifarCnn()
        elif dname == 'BreastCancerWisconsin':
            model = models.BCNN()
        elif dname in ('BankNote', 'HTRU2', 'Iris', 'WheatSeed'):
            num_classes = dc.num_classes
            num_features = dc.dim_data[0]
            model = models.IrisNN(num_features=num_features,
                                  hidden_nodes=num_features * 4,
                                  num_classes=num_classes)

    if model is None:
        raise AttributeError('Cannot find model!')
    modelname = model.__class__.__name__
    logger.info('Selected %s model', modelname)

    # set ModelContainer and train the model
    mc = models.ModelContainerPT(model, dc)
    mc.fit(max_epochs=max_epochs, batch_size=batch_size)

    # save
    if not os.path.exists('save'):
        os.makedirs('save')
    if filename is None:
        filename = get_pt_model_filename(modelname, dname, max_epochs)
    logger.debug('File name: %s', filename)
    mc.save(filename, overwrite=overwrite)

    # test result
    file_path = os.path.join('save', filename)
    logger.debug('Use saved parameters from %s', filename)
    mc.load(file_path)
    accuracy = mc.evaluate(dc.x_test, dc.y_test)
    logger.info('Accuracy on test set: %f', accuracy)
def main():
    parser = ap.ArgumentParser()
    parser.add_argument(
        '-m', '--model', type=str, required=True,
        help='a file which contains a pretrained model. The filename should in "<model>_<dataset>_e<max epochs>[_<date>].pt" format')
    parser.add_argument(
        '-e', '--epoch', type=int, required=True,
        help='the number of max epochs for training')
    parser.add_argument(
        '-r', '--ratio', type=float, required=True,
        help='the percentage of adversarial examples mix to the training set.')
    parser.add_argument(
        '-b', '--batchsize', type=int, default=128, help='batch size')
    parser.add_argument(
        '-t', '--train', action='store_true', default=False,
        help='Force the model to retrain without searching existing pretrained file')
    parser.add_argument(
        '-s', '--seed', type=int, default=4096,
        help='the seed for random number generator')
    parser.add_argument(
        '-v', '--verbose', action='store_true', default=False,
        help='set logger level to debug')
    parser.add_argument(
        '-l', '--savelog', action='store_true', default=False,
        help='save logging file')
    parser.add_argument(
        '-B', '--bim', action='store_true', default=False,
        help='Apply BIM attack')
    parser.add_argument(
        '-C', '--carlini', action='store_true', default=False,
        help='Apply Carlini L2 attack')
    parser.add_argument(
        '-D', '--deepfool', action='store_true', default=False,
        help='Apply DeepFool attack')
    parser.add_argument(
        '-F', '--fgsm', action='store_true', default=False,
        help='Apply FGSM attack')
    parser.add_argument(
        '-S', '--saliency', action='store_true', default=False,
        help='Apply Saliency Map attack')
    args = parser.parse_args()
    model_file = args.model
    max_epochs = args.epoch
    ratio = args.ratio
    batch_size = args.batchsize
    seed = args.seed
    verbose = args.verbose
    save_log = args.savelog
    need_train = args.train

    model_name, data_name = parse_model_filename(model_file)

    # Which attack should apply?
    attack_list = []
    if args.bim:
        attack_list.append('BIM')
    if args.carlini:
        attack_list.append('Carlini')
    if args.deepfool:
        attack_list.append('DeepFool')
    if args.fgsm:
        attack_list.append('FGSM')
    if args.saliency:
        attack_list.append('Saliency')

    # Quit, if there is nothing to do.
    if len(attack_list) == 0:
        logger.warning('Neither received any filter nor any attack. Exit')
        sys.exit(0)

    y_file = os.path.join(
        'save', f'{model_name}_{data_name}_{attack_list[0]}_y.npy')
    attack_files = [
        os.path.join(
            'save', f'{model_name}_{data_name}_{attack_list[0]}_x.npy')
    ]
    for attack_name in attack_list:
        attack_files.append(os.path.join(
            'save', f'{model_name}_{data_name}_{attack_name}_adv.npy'))
    # the 1st file this the clean inputs
    attack_list = ['clean'] + attack_list

    # Do I need train the discriminator?
    pretrain_file = f'AdvTrain_{model_name}_{data_name}.pt'
    if not os.path.exists(os.path.join('save', pretrain_file)):
        need_train = True

    # set logging config. Run this before logging anything!
    set_logging(LOG_NAME, data_name, verbose, save_log)

    # show parameters
    print(f'[{LOG_NAME}] Running adversarial training on {model_name}...')
    logger.info('Start at    : %s', get_time_str())
    logger.info('RECEIVED PARAMETERS:')
    logger.info('model file  :%s', model_file)
    logger.info('model       :%s', model_name)
    logger.info('dataset     :%s', data_name)
    logger.info('max_epochs  :%d', max_epochs)
    logger.info('ratio  :%d', ratio)
    logger.info('batch_size  :%d', batch_size)
    logger.info('seed        :%d', seed)
    logger.info('verbose     :%r', verbose)
    logger.info('save_log    :%r', save_log)
    logger.info('need train  :%r', need_train)
    logger.info('attacks     :%s', ', '.join(attack_list))

    # check files
    for file_name in [model_file, y_file] + attack_files:
        if not os.path.exists(file_name):
            logger.error('%s does not exist!', file_name)
            raise FileNotFoundError('{} does not exist!'.format(file_name))

    # reset seed
    master_seed(seed)

    # select data
    dc = get_data_container(
        data_name,
        use_shuffle=True,
        use_normalize=True,
    )

    # select a model
    Model = get_model(model_name)
    model = Model()
    if data_name in ('BankNote', 'HTRU2', 'Iris', 'WheatSeed'):
        num_classes = dc.num_classes
        num_features = dc.dim_data[0]
        model = IrisNN(
            num_features=num_features,
            hidden_nodes=num_features*4,
            num_classes=num_classes)
    classifier_mc = ModelContainerPT(model, dc)
    classifier_mc.load(model_file)
    accuracy = classifier_mc.evaluate(dc.x_test, dc.y_test)
    logger.info('Accuracy on test set: %f', accuracy)

    attack = BIMContainer(
        classifier_mc,
        eps=0.3,
        eps_step=0.1,
        max_iter=100,
        targeted=False)

    adv_trainer = AdversarialTraining(classifier_mc, [attack])
    if need_train:
        adv_trainer.fit(max_epochs=max_epochs,
                        batch_size=batch_size, ratio=ratio)
        adv_trainer.save(pretrain_file, overwrite=True)
    else:
        adv_trainer.load(os.path.join('save', pretrain_file))

    y = np.load(y_file, allow_pickle=False)
    for i in range(len(attack_list)):
        adv_file = attack_files[i]
        adv_name = attack_list[i]
        logger.debug('Load %s...', adv_file)
        adv = np.load(adv_file, allow_pickle=False)
        accuracy = classifier_mc.evaluate(adv, y)
        logger.info('Accuracy on %s set: %f', adv_name, accuracy)
        blocked_indices = adv_trainer.detect(adv, return_passed_x=False)
        logger.info('Blocked %d/%d samples on %s',
                    len(blocked_indices), len(adv), adv_name)
def main():
    parser = ap.ArgumentParser()
    parser.add_argument(
        '-m',
        '--model',
        type=str,
        required=True,
        help=
        'a file which contains a pretrained model. The filename should in "<model>_<dataset>_e<max epochs>[_<date>].pt" format'
    )
    parser.add_argument('-e',
                        '--epoch',
                        type=int,
                        required=True,
                        help='the number of max epochs for training')
    parser.add_argument(
        '-d',
        '--depth',
        type=int,
        default=0,
        help=
        'The image color depth for input images. Apply Binary-Depth filter when receives a parameter'
    )
    parser.add_argument(
        '--sigma',
        type=float,
        default=0,
        help=
        'The Standard Deviation of Normal distribution. Apply Gaussian Noise filter when receives a parameter'
    )
    parser.add_argument(
        '-k',
        '--kernelsize',
        type=int,
        default=0,
        help=
        'The kernel size for Median filter. Apply median filter when receives a parameter'
    )
    parser.add_argument('-b',
                        '--batchsize',
                        type=int,
                        default=128,
                        help='batch size')
    parser.add_argument(
        '-T',
        '--train',
        action='store_true',
        default=False,
        help=
        'Force the model to retrain without searching existing pretrained file'
    )
    parser.add_argument('-s',
                        '--seed',
                        type=int,
                        default=4096,
                        help='the seed for random number generator')
    parser.add_argument('-v',
                        '--verbose',
                        action='store_true',
                        default=False,
                        help='set logger level to debug')
    parser.add_argument('-l',
                        '--savelog',
                        action='store_true',
                        default=False,
                        help='save logging file')
    parser.add_argument('-B',
                        '--bim',
                        action='store_true',
                        default=False,
                        help='Apply BIM attack')
    parser.add_argument('-C',
                        '--carlini',
                        action='store_true',
                        default=False,
                        help='Apply Carlini L2 attack')
    parser.add_argument('-D',
                        '--deepfool',
                        action='store_true',
                        default=False,
                        help='Apply DeepFool attack')
    parser.add_argument('-F',
                        '--fgsm',
                        action='store_true',
                        default=False,
                        help='Apply FGSM attack')
    parser.add_argument('-S',
                        '--saliency',
                        action='store_true',
                        default=False,
                        help='Apply Saliency Map attack')
    args = parser.parse_args()
    model_file = args.model
    max_epochs = args.epoch
    bit_depth = args.depth
    sigma = args.sigma
    kernel_size = args.kernelsize
    batch_size = args.batchsize
    seed = args.seed
    verbose = args.verbose
    save_log = args.savelog
    need_train = args.train

    model_name, data_name = parse_model_filename(model_file)

    # Which filter should apply?
    filter_list = []
    if bit_depth > 0:
        filter_list.append('binary')
    if sigma > 0:
        filter_list.append('normal')
    if kernel_size > 0:
        filter_list.append('median')

    # Which attack should apply?
    attack_list = []
    if args.fgsm:
        attack_list.append('FGSM')
    if args.bim:
        attack_list.append('BIM')
    if args.deepfool:
        attack_list.append('DeepFool')
    if args.carlini:
        attack_list.append('Carlini')
    if args.saliency:
        attack_list.append('Saliency')

    # Quit, if there is nothing to do.
    if len(filter_list) == 0 or len(attack_list) == 0:
        logger.warning('Neither received any filter nor any attack. Exit')
        sys.exit(0)

    y_file = os.path.join('save',
                          f'{model_name}_{data_name}_{attack_list[0]}_y.npy')
    attack_files = [
        os.path.join('save',
                     f'{model_name}_{data_name}_{attack_list[0]}_x.npy')
    ]
    for attack_name in attack_list:
        attack_files.append(
            os.path.join('save',
                         f'{model_name}_{data_name}_{attack_name}_adv.npy'))
    # the 1st file this the clean inputs
    attack_list = ['clean'] + attack_list

    # Do I need train the distillation network?
    pretrain_files = []
    for fname in filter_list:
        pretrain_file = build_squeezer_filename(model_name, data_name,
                                                max_epochs, fname)
        pretrain_files.append(pretrain_file)
        if not os.path.exists(os.path.join('save', pretrain_file)):
            need_train = True

    # set logging config. Run this before logging anything!
    set_logging(LOG_NAME, data_name, verbose, save_log)

    # show parameters
    print(f'[{LOG_NAME}] Running feature squeezing on {model_name}...')
    logger.info('Start at    : %s', get_time_str())
    logger.info('RECEIVED PARAMETERS:')
    logger.info('model file  :%s', model_file)
    logger.info('model       :%s', model_name)
    logger.info('dataset     :%s', data_name)
    logger.info('max_epochs  :%d', max_epochs)
    logger.info('bit_depth   :%d', bit_depth)
    logger.info('sigma       :%f', sigma)
    logger.info('kernel_size :%d', kernel_size)
    logger.info('batch_size  :%d', batch_size)
    logger.info('seed        :%d', seed)
    logger.info('verbose     :%r', verbose)
    logger.info('save_log    :%r', save_log)
    logger.info('need train  :%r', need_train)
    logger.info('filters     :%s', ', '.join(filter_list))
    logger.info('attacks     :%s', ', '.join(attack_list))
    logger.info('pretrained  :%s', ', '.join(pretrain_files))

    # check files
    for file_name in [model_file, y_file] + attack_files:
        if not os.path.exists(file_name):
            logger.error('%s does not exist!', file_name)
            raise FileNotFoundError('{} does not exist!'.format(file_name))

    # reset seed
    master_seed(seed)

    # select data
    dc = get_data_container(
        data_name,
        use_shuffle=True,
        use_normalize=True,
    )

    # select a model
    Model = get_model(model_name)
    model = Model()
    if data_name in ('BankNote', 'HTRU2', 'Iris', 'WheatSeed'):
        num_classes = dc.num_classes
        num_features = dc.dim_data[0]
        model = IrisNN(num_features=num_features,
                       hidden_nodes=num_features * 4,
                       num_classes=num_classes)
    classifier_mc = ModelContainerPT(model, dc)
    classifier_mc.load(model_file)
    accuracy = classifier_mc.evaluate(dc.x_test, dc.y_test)
    logger.info('Accuracy on test set: %f', accuracy)

    # initialize Squeezer
    squeezer = FeatureSqueezing(
        classifier_mc,
        filter_list,
        bit_depth=bit_depth,
        sigma=sigma,
        kernel_size=kernel_size,
        pretrained=True,
    )

    # train or load parameters for Squeezer
    if need_train:
        squeezer.fit(max_epochs=max_epochs, batch_size=batch_size)
        squeezer.save(model_file, True)
    else:
        squeezer.load(model_file)

    # traverse all attacks
    y = np.load(y_file, allow_pickle=False)
    for i in range(len(attack_list)):
        adv_file = attack_files[i]
        adv_name = attack_list[i]
        logger.debug('Load %s...', adv_file)
        adv = np.load(adv_file, allow_pickle=False)
        acc_og = classifier_mc.evaluate(adv, y)
        acc_squeezer = squeezer.evaluate(adv, y)
        logger.info('Accuracy on %s set - OG: %f, Squeezer: %f', adv_name,
                    acc_og, acc_squeezer)
        blocked_indices = squeezer.detect(adv, return_passed_x=False)
        logger.info('Blocked %d/%d samples on %s', len(blocked_indices),
                    len(adv), adv_name)