def main():
    meshes = [
        ('hand', 5, 'meshes/hand_868.obj', [10, 30], False),
        ('fertility', 5, 'meshes/fertility/FE_10k.off', [10, 40], False),
        ('bunny', 1.25, 'meshes/bunny_fixed.obj', [10, 40], False),
    ]

    result_lines = []

    for mesh_name, mu, filename, Ks, scaled in meshes:
        verts, tris = load_mesh(filename, check=False, normalize=True)
        print mesh_name, len(verts), len(tris)
        for K in Ks:
            t_cmh = time()
            Phi_cmh, D_cmh = cmm.compressed_manifold_modes(
                verts, tris, K, init='varimax',
                mu=mu, scaled=scaled, return_D=True)
            t_cmh = time() - t_cmh

            t_mh = time()
            Phi_mh, D_mh = cmm.manifold_harmonics(
                verts, tris, K, return_D=True, scaled=scaled)
            t_mh = time() - t_mh

            Phi_mh = Phi_mh.astype(np.float64)
            Phi_cmh = Phi_cmh.astype(np.float64)
            Phi_cmh[np.abs(Phi_cmh) < 1.e-7] = 0
            Phi_cmh_sp = sparse.csr_matrix(Phi_cmh, dtype=np.float64)

            if scaled:
                verts_rec_cmh = np.dot(Phi_cmh, np.dot((D_cmh * Phi_cmh).T, verts))
                verts_rec_mh = np.dot(Phi_mh, np.dot((D_mh * Phi_mh).T, verts))
            else:
                verts_rec_cmh = np.dot(Phi_cmh, np.dot(Phi_cmh.T, verts))
                verts_rec_mh = np.dot(Phi_mh, np.dot(Phi_mh.T, verts))

            line_format = "{mesh_name} & {num_verts:>8d} & {basis} & {K:d} & {mu:>4} & {error:>6.2f} & {size:>8} & {time:>5.2f}s"
            result_lines.append(line_format.format(
                mesh_name=mesh_name, basis='MHB', K=K, mu='-',
                num_verts=len(verts),
                error=np.linalg.norm(verts_rec_mh - verts),
                size=sizeof_fmt(Phi_mh.nbytes),
                time=t_mh,
            ))

            result_lines.append(line_format.format(
                mesh_name=mesh_name, basis='CMB', K=K, mu='%.2f' % mu,
                num_verts=len(verts),
                error=np.linalg.norm(verts_rec_cmh - verts),
                size=sizeof_fmt(Phi_cmh_sp.data.nbytes + Phi_cmh_sp.indptr.nbytes + Phi_cmh_sp.indices.nbytes),
                time=t_cmh,
            ))

    print "------------"
    print "TABLE START:"
    print "------------"
    print "mesh & basis & $K$ & $\\mu$ & error & size & time"
    for line in result_lines:
        print line
Example #2
0
def main():
    experiments = [
        ('meshes/fertility/FE_20k.off', 6, [0., 0.25, 0.5, 1.0], 12.5),
        ('meshes/bimba/bimba_cvd_10k.off', 5, [0, 0.25, 0.5, 1.0], 30),
    ]

    wvs = []

    for filename, K, noise_levels, mu in experiments:
        verts, tris = load_mesh(filename, check=False)
        verts = verts / verts.std()
        avg_edge_len = compute_average_edge_length(verts, tris)

        # compute cmm for each noise level
        vis_meshes = []
        for noise_level in noise_levels:
            if noise_level <= 0:
                verts_noisy = verts
            else:
                noise_scale = noise_level * avg_edge_len
                noise = np.random.normal(scale=noise_scale, size=verts.shape)
                verts_noisy = verts + noise

            Phi_cmh = cmm.compressed_manifold_modes(
                verts_noisy,
                tris,
                K,
                mu=mu,
                scaled=True,
                init='varimax',
            )

            if noise_level <= 0:
                label = 'no noise'
            else:
                label = '%.0f%% gaussian noise' % (noise_level * 100)

            vis_meshes.append((verts_noisy, tris, Phi_cmh, label))

        # initialize the visualization, show later when all experiments done
        wvs.append(
            WeightsVisualization(vis_meshes,
                                 show_labels=True,
                                 actor_options=dict(interpolation='flat')))

    # show visualization windows
    for wv in wvs[:-1]:
        wv.edit_traits()
    wvs[-1].configure_traits()
Example #3
0
def main():
    experiments = [
        ('meshes/fertility/FE_20k.off', 6, [0., 0.25, 0.5, 1.0], 12.5),
        ('meshes/bimba/bimba_cvd_10k.off', 5, [0, 0.25, 0.5, 1.0], 30),
    ]

    wvs = []

    for filename, K, noise_levels, mu in experiments:
        verts, tris = load_mesh(filename, check=False)
        verts = verts / verts.std()
        avg_edge_len = compute_average_edge_length(verts, tris)

        # compute cmm for each noise level
        vis_meshes = []
        for noise_level in noise_levels:
            if noise_level <= 0:
                verts_noisy = verts
            else:
                noise_scale = noise_level * avg_edge_len
                noise = np.random.normal(scale=noise_scale, size=verts.shape)
                verts_noisy = verts + noise

            Phi_cmh = cmm.compressed_manifold_modes(
                verts_noisy, tris, K,
                mu=mu, scaled=True, init='varimax',
            )

            if noise_level <= 0:
                label = 'no noise'
            else:
                label = '%.0f%% gaussian noise' % (noise_level * 100)

            vis_meshes.append((verts_noisy, tris, Phi_cmh, label))

        # initialize the visualization, show later when all experiments done
        wvs.append(WeightsVisualization(
            vis_meshes, show_labels=True,
            actor_options=dict(interpolation='flat')))

    # show visualization windows
    for wv in wvs[:-1]:
        wv.edit_traits()
    wvs[-1].configure_traits()
Example #4
0
import numpy as np

from cmmlib import cmm
from cmmlib.inout import load_mesh
from cmmlib.vis.weights import WeightsVisualization

# load the bumpy meshes in 2 resolutions
verts1, tris1 = load_mesh('meshes/bump512.obj')
verts2, tris2 = load_mesh('meshes/bump32768.obj')

# we need to use a trick here to obtain the mode on the bump itself
# initialize the manifold mode such that it is zero at every vertex,
# but one at the peak of the bump
Phi_init1 = np.zeros((len(verts1), 1))
Phi_init1[verts1[:, 1].argmax()] = 1.0
Phi_init2 = np.zeros((len(verts2), 1))
Phi_init2[verts2[:, 1].argmax()] = 1.0

# set parameters
# NOTE: these might not give exactly the same results as in the paper
#       since the code was significantly changed after producing Fig. 2
#       the code here still shows the same behavior of the scaling
K = Phi_init1.shape[1]
mu_scaled = 50.
mu_unscaled = 20.0
params = dict(maxiter=5000)

# compute modes
Phi1_scaled = cmm.compressed_manifold_modes(verts1,
                                            tris1,
                                            K,
def main():
    experiments = [
        ('meshes/fertility/FE_20k.off', 6, [0., 500], 12.5),
        ('meshes/bimba/bimba_cvd_10k.off', 5, [0, 100, 200], 30),
    ]

    wvs = []

    for filename, K, all_n_holes, mu in experiments:
        verts, tris = load_mesh(filename, check=False)
        verts = verts / verts.std()

        # compute cmm for each noise level
        vis_meshes = []
        for n_holes in all_n_holes:
            if n_holes <= 0:
                tris_holes = tris
                verts_holes = verts
            else:
                while True:
                    # place holes
                    hole_centers = np.random.randint(0, len(verts), n_holes)
                    keep_vertex = np.ones(len(verts), np.bool)
                    keep_vertex[hole_centers] = False
                    keep_tri = keep_vertex[tris].all(axis=1)
                    tris_holes = filter_reindex(keep_vertex, tris[keep_tri])
                    verts_holes = verts[keep_vertex]
                    # check if mesh is still a single connected graph
                    ij = np.r_[np.c_[tris_holes[:, 0], tris_holes[:, 1]],
                               np.c_[tris_holes[:, 0], tris_holes[:, 2]],
                               np.c_[tris_holes[:, 1], tris_holes[:, 2]]]
                    n_keep = verts[keep_vertex].shape[0]
                    G = csr_matrix(
                        (np.ones(len(ij)), ij.T),
                        shape=(n_keep, n_keep))
                    n_components, labels = connected_components(G, directed=0)
                    if n_components == 1:
                        break
                    else:
                        # mesh was torn apart by hole creation process 
                        # trying another set of random holes
                        pass

            Phi_cmh = cmm.compressed_manifold_modes(
                verts_holes, tris_holes, K, 
                mu=mu, scaled=True, init='varimax',
            )

            if n_holes <= 0:
                label = 'no holes'
            else:
                label = '%d holes' % (n_holes)

            vis_meshes.append((verts_holes, tris_holes, Phi_cmh, label))

        # initialize the visualization, show later when all experiments done
        wvs.append(WeightsVisualization(vis_meshes, show_labels=True))

    # show visualization windows
    for wv in wvs[:-1]:
        wv.edit_traits()
    wvs[-1].configure_traits()
Example #6
0
import sys
from os import path
import numpy as np

from cmmlib import cmm
from cmmlib.inout import load_mesh
from cmmlib.vis.weights import show_many_weights


scape_dir = path.join('meshes', 'scape')
if not path.exists(scape_dir) or not path.exists(path.join(scape_dir, 'mesh000.off')):
    print "SCAPE dataset not found. You need to get it from James Davis."
    print "Instructions on this website: "
    print "http://robotics.stanford.edu/~drago/Projects/scape/scape.html"
    sys.exit(1)

meshes = [load_mesh(path.join(scape_dir, 'mesh%03d.off' % i), normalize=True)
          for i in [0, 7, 10]]

results = []
for verts, tris in meshes:
    Phi_cmh = cmm.compressed_manifold_modes(
        verts, tris, 10, mu=12.5, scaled=True, maxiter=2000)
    results.append((verts, tris, Phi_cmh))

show_many_weights(results)
Example #7
0
import numpy as np

from cmmlib import cmm
from cmmlib.inout import load_mesh
from cmmlib.vis.weights import show_many_weights

scape_dir = path.join('meshes', 'scape')
if not path.exists(scape_dir) or not path.exists(
        path.join(scape_dir, 'mesh000.off')):
    print "SCAPE dataset not found. You need to get it from James Davis."
    print "Instructions on this website: "
    print "http://robotics.stanford.edu/~drago/Projects/scape/scape.html"
    sys.exit(1)

meshes = [
    load_mesh(path.join(scape_dir, 'mesh%03d.off' % i), normalize=True)
    for i in [0, 7, 10]
]

results = []
for verts, tris in meshes:
    Phi_cmh = cmm.compressed_manifold_modes(verts,
                                            tris,
                                            10,
                                            mu=12.5,
                                            scaled=True,
                                            maxiter=2000)
    results.append((verts, tris, Phi_cmh))

show_many_weights(results)
Example #8
0
from cmmlib import cmm
from cmmlib.inout import load_mesh
from cmmlib.vis.weights import show_weights

K1 = 8 + 6 + 12
K2 = 4
verts, tris = load_mesh('meshes/bumpy_cube6.obj')

Phi_cpr1 = cmm.compressed_manifold_modes(verts, tris, K1, mu=20., scaled=False)
Phi_cpr2 = cmm.compressed_manifold_modes(verts, tris, K2, mu=20., scaled=False)
Phi_vari1 = cmm.varimax_modes(verts, tris, K1)
Phi_vari2 = cmm.varimax_modes(verts, tris, K2)

# establish some consistent ordering of varimax modes just for visualization
i = (Phi_cpr2[:, 0]**2).argmax()  # select one vertex
# permute according to activation strength of that vertex
Phi_vari2 = Phi_vari2[:, (Phi_vari2[i]**2).argsort()[::-1]]
Phi_vari1 = Phi_vari1[:, (Phi_vari1[i]**2).argsort()[::-1]]
Phi_cpr2 = Phi_cpr2[:, (Phi_cpr2[i]**2).argsort()[::-1]]
Phi_cpr1 = Phi_cpr1[:, (Phi_cpr1[i]**2).argsort()[::-1]]

show_weights(verts,
             tris, (Phi_cpr1, Phi_cpr2, Phi_vari1, Phi_vari2),
             ('CMM, K=%d' % K1, 'CMM, K=%d' % K2, 'Variax, K=%d' % K1,
              'Varimax, K=%d' % K2),
             contours=7,
             show_labels=True)
def main():
    meshes = [
        ('hand', 5, 'meshes/hand_868.obj', [10, 30], False),
        ('fertility', 5, 'meshes/fertility/FE_10k.off', [10, 40], False),
        ('bunny', 1.25, 'meshes/bunny_fixed.obj', [10, 40], False),
    ]

    result_lines = []

    for mesh_name, mu, filename, Ks, scaled in meshes:
        verts, tris = load_mesh(filename, check=False, normalize=True)
        print mesh_name, len(verts), len(tris)
        for K in Ks:
            t_cmh = time()
            Phi_cmh, D_cmh = cmm.compressed_manifold_modes(verts,
                                                           tris,
                                                           K,
                                                           init='varimax',
                                                           mu=mu,
                                                           scaled=scaled,
                                                           return_D=True)
            t_cmh = time() - t_cmh

            t_mh = time()
            Phi_mh, D_mh = cmm.manifold_harmonics(verts,
                                                  tris,
                                                  K,
                                                  return_D=True,
                                                  scaled=scaled)
            t_mh = time() - t_mh

            Phi_mh = Phi_mh.astype(np.float64)
            Phi_cmh = Phi_cmh.astype(np.float64)
            Phi_cmh[np.abs(Phi_cmh) < 1.e-7] = 0
            Phi_cmh_sp = sparse.csr_matrix(Phi_cmh, dtype=np.float64)

            if scaled:
                verts_rec_cmh = np.dot(Phi_cmh,
                                       np.dot((D_cmh * Phi_cmh).T, verts))
                verts_rec_mh = np.dot(Phi_mh, np.dot((D_mh * Phi_mh).T, verts))
            else:
                verts_rec_cmh = np.dot(Phi_cmh, np.dot(Phi_cmh.T, verts))
                verts_rec_mh = np.dot(Phi_mh, np.dot(Phi_mh.T, verts))

            line_format = "{mesh_name} & {num_verts:>8d} & {basis} & {K:d} & {mu:>4} & {error:>6.2f} & {size:>8} & {time:>5.2f}s"
            result_lines.append(
                line_format.format(
                    mesh_name=mesh_name,
                    basis='MHB',
                    K=K,
                    mu='-',
                    num_verts=len(verts),
                    error=np.linalg.norm(verts_rec_mh - verts),
                    size=sizeof_fmt(Phi_mh.nbytes),
                    time=t_mh,
                ))

            result_lines.append(
                line_format.format(
                    mesh_name=mesh_name,
                    basis='CMB',
                    K=K,
                    mu='%.2f' % mu,
                    num_verts=len(verts),
                    error=np.linalg.norm(verts_rec_cmh - verts),
                    size=sizeof_fmt(Phi_cmh_sp.data.nbytes +
                                    Phi_cmh_sp.indptr.nbytes +
                                    Phi_cmh_sp.indices.nbytes),
                    time=t_cmh,
                ))

    print "------------"
    print "TABLE START:"
    print "------------"
    print "mesh & basis & $K$ & $\\mu$ & error & size & time"
    for line in result_lines:
        print line
from itertools import product
import numpy as np

from cmmlib import cmm
from cmmlib.inout import load_mesh
from cmmlib.vis.weights import show_weights


K = 1
num_inits = 6
at_iters = [0, 2, 10, 50, 200, 1000]
verts, tris = load_mesh('meshes/bunny_fixed.obj')
_, _, color1 = load_mesh('meshes/bunny_fixed_ear.off', no_colors=False)
_, _, color2 = load_mesh('meshes/bunny_fixed_sgp.off', no_colors=False)

all_Phis = []
for init in xrange(num_inits):
    if init == 0:
        Phi_init = -1 * (color1[:, 0] > 200).astype(np.float).reshape(len(verts), K)
    elif init == 1:
        Phi_init = 1 * (color2[:, 0] > 200).astype(np.float).reshape(len(verts), K)
    else:
        Phi_init = np.random.uniform(-1, 1, (len(verts), K))
    Phis = [Phi_init]

    def callback(H, mu, Phi, E, S, **kwargs):
        global i
        i += 1
        if i in at_iters:
            Phis.append(Phi)
from cmmlib import cmm
from cmmlib.inout import load_mesh
from cmmlib.vis.weights import show_weights


K1 = 8 + 6 + 12
K2 = 4
verts, tris = load_mesh('meshes/bumpy_cube6.obj')

Phi_cpr1 = cmm.compressed_manifold_modes(verts, tris, K1, mu=20., scaled=False)
Phi_cpr2 = cmm.compressed_manifold_modes(verts, tris, K2, mu=20., scaled=False)
Phi_vari1 = cmm.varimax_modes(verts, tris, K1)
Phi_vari2 = cmm.varimax_modes(verts, tris, K2)

# establish some consistent ordering of varimax modes just for visualization
i = (Phi_cpr2[:, 0]**2).argmax()  # select one vertex
# permute according to activation strength of that vertex
Phi_vari2 = Phi_vari2[:, (Phi_vari2[i]**2).argsort()[::-1]]
Phi_vari1 = Phi_vari1[:, (Phi_vari1[i]**2).argsort()[::-1]]
Phi_cpr2 = Phi_cpr2[:, (Phi_cpr2[i]**2).argsort()[::-1]]
Phi_cpr1 = Phi_cpr1[:, (Phi_cpr1[i]**2).argsort()[::-1]]

show_weights(
    verts, tris,
    (Phi_cpr1, Phi_cpr2, Phi_vari1, Phi_vari2),
    ('CMM, K=%d' % K1, 'CMM, K=%d' % K2, 'Variax, K=%d' % K1, 'Varimax, K=%d' % K2),
    contours=7, show_labels=True)
def main():
    # prepare data
    verts, tris = load_mesh('meshes/bumpy_cube6.obj')
    K = 8 + 6 + 12
    mu = 20.0
    maxiter = 500
    num_experiments = 1

    # prepare data structures
    ResultData = namedtuple('ResultData', 'Phi info logger')
    data_per_algo = defaultdict(list)
    # parameters passed to algorithms - to be fair,
    # turn off automatic penalty adjustment in our method
    # set check_interval = 1 to force callback to be called in every iteration
    algorithms = [
        ('osher', cmm.solve_compressed_osher,
            dict()),
        ('ours', cmm.solve_compressed_splitorth,
            dict(auto_adjust_penalty=False, check_interval=1)),
    ]

    # run the algorithm with same input mesh and
    # different random initializations
    print "will now run the method with %d different initializations" % num_experiments
    print "the primal residual with our method should consistently be lower compared to Oshers et al."
    for random_seed in range(num_experiments):
        np.random.seed(random_seed)
        Phi_init = np.random.random((len(verts), K))
        print "--"
        print "running experiment %d" % random_seed
        for name, method, options in algorithms:
            Phi, info, logger = test_convergence(
                verts, tris, K, mu,
                Phi_init, method, maxiter, **options)
            print name, info['r_primal']
            data_per_algo[name].append(ResultData(Phi, info, logger))

    # visualize results
    import matplotlib
    if len(sys.argv) > 1:
        matplotlib.use('pgf') # TODO PGF
    else:
        matplotlib.use('WxAgg')

    import pylab as pl
    pl.rc('text', usetex=True)
    pl.rc('font', size=6)
    pl.figure(figsize=(0.9, 1.1))
    plot_fun = pl.semilogy
    plot_fun(data_per_algo['osher'][0].logger.r_primals, c='r',
             label=r'osher')
    plot_fun(data_per_algo['ours'][0].logger.r_primals, c='g',
             label=r'ours')
    pl.legend(loc='center right').draggable()
    pl.locator_params(nbins=4, axis='x')
    pl.xlabel('iteration')
    pl.ylabel(r'$  \left\Vert r \right\Vert_2$')
    pl.gca().yaxis.set_major_locator(matplotlib.ticker.LogLocator(numticks=4))

    if len(sys.argv) > 2:
        pl.savefig(sys.argv[1])  #, bbox_inches='tight')
    else:
        pl.ion()
        pl.show()

    # let us first visualize the modes where things go wrong
    # which are most probably those where the primal residual is very high
    Q = data_per_algo['osher'][0].info['Q']
    P = data_per_algo['osher'][0].info['P']
    worst_first = ((Q - P)**2).sum(axis=0).argsort()[::-1]

    show_weights(
        verts, tris,
        (data_per_algo['osher'][0].Phi[:, worst_first], 
         data_per_algo['ours'][0].Phi[:, worst_first]), 
        ('osher', 'ours')
    )
import numpy as np
from cmmlib import cmm
from cmmlib.inout import load_mesh
from cmmlib.vis.weights import show_many_weights


K = 6
verts, tris = load_mesh('meshes/hand_4054.obj')

# compute bases
Phi_cmh = cmm.compressed_manifold_modes(verts, tris, K, mu=2, scaled=False)
Phi_mh = cmm.manifold_harmonics(verts, tris, K, scaled=False)

# reconstruct from bases
verts_rec_cmh = np.dot(Phi_cmh, np.dot(Phi_cmh.T, verts))
verts_rec_mh = np.dot(Phi_mh, np.dot(Phi_mh.T, verts))

show_many_weights(
    ((verts, tris, None, 'Input'),
     (verts_rec_mh, tris, None, 'MH reconstr.'),
     (verts_rec_cmh, tris, None, 'CMM reconstr.')),
    show_labels=True,
    actor_options=dict(edge_visibility=True, line_width=1.0))
Example #14
0
def main(input_filename, K, mu, output_dir=None, visualize=False, scaled=False,
         maxiter=None, ply=False, off=False):

    if (off or ply) and not output_dir:
        print "please specify an output directory"
        return 1

    if output_dir and not path.exists(output_dir):
        print "%s does not exist" % output_dir
        return 2

    verts, tris = load_mesh(input_filename, normalize=True)
    print "%d vertices, %d faces" % (len(verts), len(tris))

    Phi_cpr, D = cmm.compressed_manifold_modes(
        verts, tris, K, mu=mu, scaled=scaled,
        maxiter=maxiter, verbose=100, return_D=True)

    if D is None:
        D_diag = np.ones(len(verts))
        D = sparse.eye(len(verts))
    else:
        D_diag = D.data

    if visualize:
        from cmmlib.vis.weights import show_weights
        show_weights(verts, tris, Phi_cpr)

    if output_dir:
        # save in simple text format
        np.savetxt(path.join(output_dir, 'phi.txt'), Phi_cpr, fmt='%f')
        np.savetxt(path.join(output_dir, 'D_diag.txt'), D_diag, fmt='%f')

        # save in matlab format
        savemat(path.join(output_dir, 'phi.mat'),
                dict(verts=verts, tris=tris+1, phi=Phi_cpr, D=D))

        # save HDF5 format if possible
        try:
            import h5py
        except ImportError:
            print "Cannot save as HDF5, please install the h5py module"
        else:
            with h5py.File(path.join(output_dir, 'phi.h5'), 'w') as f:
                f['verts'] = verts
                f['tris'] = tris
                f['phi'] = Phi_cpr
                f['d_diag'] = D_diag

        # save NPY format
        np.save(path.join(output_dir, 'phi.npy'), Phi_cpr)
        np.save(path.join(output_dir, 'D_diag.npy'), Phi_cpr)

        if off or ply:
            # map phi scalars to colors
            from mayavi.core.lut_manager import LUTManager
            from cmmlib.vis.weights import _centered
            lut = LUTManager(lut_mode='RdBu').lut.table.to_array()[:, :3]
            colors = [
                lut[(_centered(Phi_cpr[:, k]) * (lut.shape[0]-1)).astype(int)]
                for k in xrange(K)]
            # save in a single scene as a collage
            w = int(np.ceil(np.sqrt(K))) if K > 6 else K
            spacing = 1.2 * verts.ptp(axis=0)
            all_verts = [verts + spacing * (1.5, 0, 0)]
            all_tris = [tris]
            all_color = [np.zeros(verts.shape, np.int) + 127]
            for k in xrange(K):
                all_verts.append(verts + spacing * (-(k % w), 0, int(k / w)))
                all_tris.append(tris + len(verts) * (k+1))
                all_color.append(colors[k])

            if off:
                save_coff(path.join(output_dir, 'input.off'),
                          verts.astype(np.float32), tris)
                for k in xrange(K):
                    save_coff(path.join(output_dir, 'cmh_%03d.off' % k),
                              verts.astype(np.float32), tris, colors[k])
                save_coff(path.join(output_dir, 'all.off'),
                          np.vstack(all_verts), np.vstack(all_tris),
                          np.vstack(all_color))

            if ply:
                from tvtk.api import tvtk
                pd = tvtk.PolyData(
                    points=np.vstack(all_verts).astype(np.float32),
                    polys=np.vstack(all_tris).astype(np.uint32))
                pd.point_data.scalars = np.vstack(all_color).astype(np.uint8)
                pd.point_data.scalars.name = 'colors'
                ply = tvtk.PLYWriter(
                    file_name=path.join(output_dir, 'all.ply'),
                    input=pd, color=(1, 1, 1))
                ply.array_name = 'colors'
                ply.write()
Example #15
0
import numpy as np

from cmmlib import cmm
from cmmlib.inout import load_mesh
from cmmlib.vis.weights import WeightsVisualization


# load the bumpy meshes in 2 resolutions
verts1, tris1 = load_mesh('meshes/bump512.obj')
verts2, tris2 = load_mesh('meshes/bump32768.obj')

# we need to use a trick here to obtain the mode on the bump itself
# initialize the manifold mode such that it is zero at every vertex, 
# but one at the peak of the bump
Phi_init1 = np.zeros((len(verts1), 1))
Phi_init1[verts1[:, 1].argmax()] = 1.0
Phi_init2 = np.zeros((len(verts2), 1))
Phi_init2[verts2[:, 1].argmax()] = 1.0

# set parameters
# NOTE: these might not give exactly the same results as in the paper
#       since the code was significantly changed after producing Fig. 2
#       the code here still shows the same behavior of the scaling
K = Phi_init1.shape[1]
mu_scaled = 50.
mu_unscaled = 20.0
params = dict(maxiter=5000)

# compute modes
Phi1_scaled = cmm.compressed_manifold_modes(
    verts1, tris1, K, mu_scaled,
from cmmlib import cmm
from cmmlib.inout import load_mesh
from cmmlib.vis.weights import show_weights

K = 8 + 6 + 12
mu = 20.0
filename = 'meshes/bumpy_cube6.obj'

verts, tris = load_mesh(filename)

Phi_cpr = cmm.compressed_manifold_modes(verts, tris, K, mu=mu)
Phi_dense = cmm.manifold_harmonics(verts, tris, K)
Phi_vari = cmm.varimax_modes(verts, tris, K)

show_weights(verts,
             tris, (Phi_cpr, Phi_dense, Phi_vari), ('CMM', 'MH', 'Varimax'),
             show_labels=True)
Example #17
0
from cmmlib import cmm
from cmmlib.inout import load_mesh
from cmmlib.vis.weights import show_many_weights

mu = 2.0
K = 6

vms = []
for i, fn in enumerate(['hand_868', 'hand_868_holes2']):
    verts, tris = load_mesh('meshes/%s.obj' % fn)

    Phi_cpr = cmm.compressed_manifold_modes(verts, tris, K, mu=mu)
    Phi_dense = cmm.manifold_harmonics(verts, tris, K)

    vms += [(verts, tris, Phi_cpr, 'CMM #%d' % i),
            (verts, tris, Phi_dense, 'MH #%d' % i)]

show_many_weights(vms, show_labels=True)
Example #18
0
def main(input_filename, K, mu, output_dir=None, visualize=False, scaled=False,
         maxiter=None, ply=False, off=False):

    if (off or ply) and not output_dir:
        print ("please specify an output directory")
        return 1

    if output_dir and not path.exists(output_dir):
        print("%s does not exist" % output_dir)
        return 2

    verts, tris = load_mesh(input_filename, normalize=True)
    print ("%d vertices, %d faces" % (len(verts), len(tris)))

    Phi_cpr, D = cmm.compressed_manifold_modes(
        verts, tris, K, mu=mu, scaled=scaled,
        maxiter=maxiter, verbose=100, return_D=True)

    if D is None:
        D_diag = np.ones(len(verts))
        D = sparse.eye(len(verts))
    else:
        D_diag = D.data

    if visualize:
        from cmmlib.vis.weights import show_weights
        show_weights(verts, tris, Phi_cpr)

    if output_dir:
        # save in simple text format
        np.savetxt(path.join(output_dir, 'phi.txt'), Phi_cpr, fmt='%f')
        np.savetxt(path.join(output_dir, 'D_diag.txt'), D_diag, fmt='%f')

        # save in matlab format
        savemat(path.join(output_dir, 'phi.mat'),
                dict(verts=verts, tris=tris+1, phi=Phi_cpr, D=D))

        # save HDF5 format if possible
        try:
            import h5py
        except ImportError:
            print ("Cannot save as HDF5, please install the h5py module")
        else:
            with h5py.File(path.join(output_dir, 'phi.h5'), 'w') as f:
                f['verts'] = verts
                f['tris'] = tris
                f['phi'] = Phi_cpr
                f['d_diag'] = D_diag

        # save NPY format
        np.save(path.join(output_dir, 'phi.npy'), Phi_cpr)
        np.save(path.join(output_dir, 'D_diag.npy'), Phi_cpr)

        if off or ply:
            # map phi scalars to colors
            from mayavi.core.lut_manager import LUTManager
            from cmmlib.vis.weights import _centered
            lut = LUTManager(lut_mode='RdBu').lut.table.to_array()[:, :3]
            colors = [
                lut[(_centered(Phi_cpr[:, k]) * (lut.shape[0]-1)).astype(int)]
                for k in range(K)]
            # save in a single scene as a collage
            w = int(np.ceil(np.sqrt(K))) if K > 6 else K
            spacing = 1.2 * verts.ptp(axis=0)
            all_verts = [verts + spacing * (1.5, 0, 0)]
            all_tris = [tris]
            all_color = [np.zeros(verts.shape, np.int) + 127]
            for k in range(K):
                all_verts.append(verts + spacing * (-(k % w), 0, int(k / w)))
                all_tris.append(tris + len(verts) * (k+1))
                all_color.append(colors[k])

            if off:
                save_coff(path.join(output_dir, 'input.off'),
                          verts.astype(np.float32), tris)
                for k in range(K):
                    save_coff(path.join(output_dir, 'cmh_%03d.off' % k),
                              verts.astype(np.float32), tris, colors[k])
                save_coff(path.join(output_dir, 'all.off'),
                          np.vstack(all_verts), np.vstack(all_tris),
                          np.vstack(all_color))

            if ply:
                from tvtk.api import tvtk
                pd = tvtk.PolyData(
                    points=np.vstack(all_verts).astype(np.float32),
                    polys=np.vstack(all_tris).astype(np.uint32))
                pd.point_data.scalars = np.vstack(all_color).astype(np.uint8)
                pd.point_data.scalars.name = 'colors'
                ply = tvtk.PLYWriter(
                    file_name=path.join(output_dir, 'all.ply'),
                    input=pd, color=(1, 1, 1))
                ply.array_name = 'colors'
                ply.write()
Example #19
0
from cmmlib import cmm
from cmmlib.inout import load_mesh
from cmmlib.vis.weights import show_weights


K = 8 + 6 + 12
mu = 20.0
filename = 'meshes/bumpy_cube6.obj'

verts, tris = load_mesh(filename)

Phi_cpr = cmm.compressed_manifold_modes(verts, tris, K, mu=mu)
Phi_dense = cmm.manifold_harmonics(verts, tris, K)
Phi_vari = cmm.varimax_modes(verts, tris, K)

show_weights(verts, tris, (Phi_cpr, Phi_dense, Phi_vari),
             ('CMM', 'MH', 'Varimax'), show_labels=True)
from itertools import product
import numpy as np

from cmmlib import cmm
from cmmlib.inout import load_mesh
from cmmlib.vis.weights import show_weights

K = 1
num_inits = 6
at_iters = [0, 2, 10, 50, 200, 1000]
verts, tris = load_mesh('meshes/bunny_fixed.obj')
_, _, color1 = load_mesh('meshes/bunny_fixed_ear.off', no_colors=False)
_, _, color2 = load_mesh('meshes/bunny_fixed_sgp.off', no_colors=False)

all_Phis = []
for init in xrange(num_inits):
    if init == 0:
        Phi_init = -1 * (color1[:, 0] > 200).astype(np.float).reshape(
            len(verts), K)
    elif init == 1:
        Phi_init = 1 * (color2[:, 0] > 200).astype(np.float).reshape(
            len(verts), K)
    else:
        Phi_init = np.random.uniform(-1, 1, (len(verts), K))
    Phis = [Phi_init]

    def callback(H, mu, Phi, E, S, **kwargs):
        global i
        i += 1
        if i in at_iters:
            Phis.append(Phi)
Example #21
0
def main():
    experiments = [
        ('meshes/fertility/FE_20k.off', 6, [0., 500], 12.5),
        ('meshes/bimba/bimba_cvd_10k.off', 5, [0, 100, 200], 30),
    ]

    wvs = []

    for filename, K, all_n_holes, mu in experiments:
        verts, tris = load_mesh(filename, check=False)
        verts = verts / verts.std()

        # compute cmm for each noise level
        vis_meshes = []
        for n_holes in all_n_holes:
            if n_holes <= 0:
                tris_holes = tris
                verts_holes = verts
            else:
                while True:
                    # place holes
                    hole_centers = np.random.randint(0, len(verts), n_holes)
                    keep_vertex = np.ones(len(verts), np.bool)
                    keep_vertex[hole_centers] = False
                    keep_tri = keep_vertex[tris].all(axis=1)
                    tris_holes = filter_reindex(keep_vertex, tris[keep_tri])
                    verts_holes = verts[keep_vertex]
                    # check if mesh is still a single connected graph
                    ij = np.r_[np.c_[tris_holes[:, 0], tris_holes[:, 1]],
                               np.c_[tris_holes[:, 0], tris_holes[:, 2]],
                               np.c_[tris_holes[:, 1], tris_holes[:, 2]]]
                    n_keep = verts[keep_vertex].shape[0]
                    G = csr_matrix((np.ones(len(ij)), ij.T),
                                   shape=(n_keep, n_keep))
                    n_components, labels = connected_components(G, directed=0)
                    if n_components == 1:
                        break
                    else:
                        # mesh was torn apart by hole creation process
                        # trying another set of random holes
                        pass

            Phi_cmh = cmm.compressed_manifold_modes(
                verts_holes,
                tris_holes,
                K,
                mu=mu,
                scaled=True,
                init='varimax',
            )

            if n_holes <= 0:
                label = 'no holes'
            else:
                label = '%d holes' % (n_holes)

            vis_meshes.append((verts_holes, tris_holes, Phi_cmh, label))

        # initialize the visualization, show later when all experiments done
        wvs.append(WeightsVisualization(vis_meshes, show_labels=True))

    # show visualization windows
    for wv in wvs[:-1]:
        wv.edit_traits()
    wvs[-1].configure_traits()
from cmmlib import cmm
from cmmlib.inout import load_mesh
from cmmlib.vis.weights import show_many_weights


mu = 2.0
K = 6

vms = []
for i, fn in enumerate(['hand_868', 'hand_868_holes2']):
    verts, tris = load_mesh('meshes/%s.obj' % fn)

    Phi_cpr = cmm.compressed_manifold_modes(verts, tris, K, mu=mu)
    Phi_dense = cmm.manifold_harmonics(verts, tris, K)

    vms += [(verts, tris, Phi_cpr, 'CMM #%d' % i),
            (verts, tris, Phi_dense, 'MH #%d' % i)]

show_many_weights(vms, show_labels=True)
import numpy as np
from cmmlib import cmm
from cmmlib.inout import load_mesh
from cmmlib.vis.weights import show_many_weights

K = 6
verts, tris = load_mesh('meshes/hand_4054.obj')

# compute bases
Phi_cmh = cmm.compressed_manifold_modes(verts, tris, K, mu=2, scaled=False)
Phi_mh = cmm.manifold_harmonics(verts, tris, K, scaled=False)

# reconstruct from bases
verts_rec_cmh = np.dot(Phi_cmh, np.dot(Phi_cmh.T, verts))
verts_rec_mh = np.dot(Phi_mh, np.dot(Phi_mh.T, verts))

show_many_weights(
    ((verts, tris, None, 'Input'), (verts_rec_mh, tris, None, 'MH reconstr.'),
     (verts_rec_cmh, tris, None, 'CMM reconstr.')),
    show_labels=True,
    actor_options=dict(edge_visibility=True, line_width=1.0))
from mayavi.core.lut_manager import LUTManager

from cmmlib import cmm
from cmmlib.inout import load_mesh
from cmmlib.vis.weights import show_many_weights



experiments = [
    ('meshes/armadillo_61372.obj', [3, 7], 20.),
    ('meshes/elk.off', [3, 7], 20.),
]
results = []

for filename, Ks, mu in experiments:
    verts, tris = load_mesh(filename, normalize=True)

    # for different K, compute the CMMs
    Phis = []
    for K in Ks:
        Phi_cmh = cmm.compressed_manifold_modes(
            verts, tris, K, mu, scaled=True, init='varimax')
        Phis.append(Phi_cmh)

    # color the mesh according to the CMMs
    lut = LUTManager(lut_mode='hsv').lut.table.to_array()
    colors = []
    for K, Phi in zip(Ks, Phis):
        # pass Phi through the lookup table depending on it's strength
        ti = np.linspace(0, 1, K, endpoint=False) * (lut.shape[0]-1)
        lut_rgb = lut[ti.astype(np.int), :3].astype(np.float)