Example #1
0
 def __init__(self, device="cpu"):
     self.model = CRNN(**model_parameters)
     model_data = torch.load(
         dirname(__file__) + '/logs/checkpoints/best_full.pth')
     self.model.load_state_dict(model_data['model_state_dict'])
     self.transforms = get_transforms_without_augmentations(device)
     self.converter = strLabelConverter(alphabet)
Example #2
0
    def __init__(self, name, state: State, video_reader: VideoReader, model_path):
        self.name = name
        self.logger = logging.getLogger(self.name)
        self.state = state
        self.video_reader = video_reader
        self.ocr_thread = None
        self.time_start = datetime.now()
        self.stopped = False

        converter = strLabelConverter(CV_CONFIG.get('alphabet'))
        self.predictor = Predictor(model_path, converter) #TODO: Your Predictor


        self.logger.info("Create OcrStream")
Example #3
0
    def __init__(
        self,
        name,
        state: State,
        video_reader: VideoReader,
        model_path='/home/alex/final_version_ocr/project (car numbers)/model/model_crnn.pth'
    ):
        self.name = name
        self.logger = logging.getLogger(self.name)
        self.state = state
        self.video_reader = video_reader
        self.ocr_thread = None
        self.time_start = datetime.now()
        self.stopped = False

        converter = strLabelConverter(CV_CONFIG.get('alphabet'))
        self.predictor = Predictor(model_path, converter)

        self.logger.info("Create OcrStream")
Example #4
0
    def __init__(self, model_path, transform, device="cuda"):

        alphabet = " "
        alphabet += string.ascii_uppercase
        alphabet += "".join([str(i) for i in range(10)])

        MODEL_PARAMS = {
            "image_height": 32,
            "number_input_channels": 3,
            "number_class_symbols": len(alphabet) + 1,
            "rnn_size": 64
        }
        state_dict = torch.load(model_path,
                                map_location='cpu')['model_state_dict']
        self.model = CRNN(**MODEL_PARAMS)
        self.model.load_state_dict(state_dict)
        self.model = self.model.to(device)
        self.model = self.model.eval()

        self.device = device
        self.converter = strLabelConverter(alphabet)
        self.transform = transform
        }),
    "alphabet":
    CV_CONFIG.get('alphabet'),
    "loss": {
        "reduction": 'mean'
    },
    "optimizer": ("Adam", {
        "lr": 0.001
    }),
    # CHANGE DEVICE IF YOU USE GPU
    "device":
    "cpu",
}

if __name__ == "__main__":
    converter = strLabelConverter(MODEL_PARAMS['alphabet'])

    model_path = EXPERIMENT_DIR / sorted(
        os.listdir(EXPERIMENT_DIR))[-1]  # Last saved model
    #print('Model path is', model_path)
    #print('Is it a file?', os.path.isfile(model_path))

    predictor = Predictor(model_path,
                          converter,
                          CV_CONFIG.get('ocr_image_size'),
                          device=MODEL_PARAMS['device'])

    #print('File name', args.file_name)
    #print(os.path.isdir('/workdir/data/CropNumbers'))
    #print(os.path.isfile(args.file_name))
    if os.path.isdir(args.file_name):
Example #6
0
 def __init__(self, alphabet, device='cpu'):
     super().__init__()
     self.converter = strLabelConverter(alphabet)
     self.device = device
     self.loss = nn.CTCLoss()
Example #7
0
 def __init__(self, params):
     super().__init__(params)
     self.converter = strLabelConverter(params["alphabet"])
Example #8
0
 def __init__(self):
     self.alphabet = "ABEKMHOPCTYX" + "".join([str(i)
                                               for i in range(10)]) + "-"
     self.encoder = strLabelConverter(self.alphabet)