class VideoCamera(object): def __init__(self): self.video = cv2.VideoCapture(0) self.nn = CNN() self.model = None if os.path.exists('./model.h5'): print 'Model Already Exist' print '--------------------' self.model = self.nn.load_model() else: print 'Model Does Not Exist' print '--------------------' self.model = self.nn.create_cnn_model() def __del__(self): self.video.release() def get_frame(self): _, fr = self.video.read() frame = np.copy(fr) frame = self.nn.data_frame(frame) self.nn.predict_frame(self.model, frame) _, jpeg = cv2.imencode('.jpg', fr) return jpeg.tobytes()
from cnn import CNN import os import time import threading import tensorflow as tf nn = CNN() if os.path.exists('./model2.h5'): print 'Model Already Exist' print '--------------------' model = nn.load_model() else: print 'Model Does Not Exist' print '--------------------' model = nn.create_cnn_model() input = int(raw_input('Enter 0 to train:\nEnter 1 to predict:')) if input == 0: list = [] for i in xrange(65, 91): print 'Training: ' + str(chr(i)) print '-----------------------------------------------------' images = nn.fetch_data('../asl_alphabet_train/' + chr(i)) nn.prepare_data(images, letter=chr(i)) #Nothing images = nn.fetch_data('../asl_alphabet_train/' + 'nothing') nn.prepare_data(images, letter='nothing') #Space images = nn.fetch_data('../asl_alphabet_train/' + 'space')