Example #1
0
def learning_word_embeddings_with_the_embedding_layer_cntk():
    x_train, y_train, x_test, y_test = load_from_files()

    max_features = 10000
    maxlen = 20
    embedding_dim = 8

    x = cntk.input_variable(shape=(maxlen, ), dtype=np.float32)
    y = cntk.input_variable(shape=(1, ), dtype=np.float32)
    model = cntk.one_hot(x, num_classes=max_features, sparse_output=True)
    model = cntk.layers.Embedding(embedding_dim)(model)
    model = cntk.layers.Dense(1, activation=cntk.sigmoid)(model)
    loss_function = cntk.binary_cross_entropy(model.output, y)
    round_predictions = cntk.round(model.output)
    equal_elements = cntk.equal(round_predictions, y)
    accuracy_function = cntk.reduce_mean(equal_elements, axis=0)

    max_epochs = 30
    batch_size = 32
    learner = cntk.adam(model.parameters,
                        cntk.learning_parameter_schedule_per_sample(0.0001),
                        cntk.learning_parameter_schedule_per_sample(0.99))
    progress_printer = cntk.logging.ProgressPrinter(tag='Training',
                                                    num_epochs=max_epochs)
    trainer = cntk.Trainer(model, (loss_function, accuracy_function),
                           [learner], progress_printer)
    evaluator = cntk.Evaluator(accuracy_function)

    cntk_train(x, y, x_train, y_train, max_epochs, batch_size, trainer,
               evaluator)
Example #2
0
def implementing_1d_convnet_cntk():
    max_features = 10000  # number of words to consider as features
    max_len = 500  # cut texts after this number of words (among top max_features most common words)
    x_train, y_train, x_test, y_test = load_data(max_features, max_len)

    model = build_model_cntk(max_features, max_len)
    x = cntk.input_variable(shape=(max_len, ), dtype=np.float32)
    y = cntk.input_variable(shape=(1, ), dtype=np.float32)
    model.replace_placeholders({model.placeholders[0]: x})

    loss_function = cntk.binary_cross_entropy(model.output, y)
    round_predictions = cntk.round(model.output)
    equal_elements = cntk.equal(round_predictions, y)
    accuracy_function = cntk.reduce_mean(equal_elements, axis=0)

    max_epochs = 10
    batch_size = 32
    learner = cntk.adam(model.parameters,
                        cntk.learning_parameter_schedule_per_sample(0.0001),
                        cntk.learning_parameter_schedule_per_sample(0.99))
    progress_printer = cntk.logging.ProgressPrinter(tag='Training',
                                                    num_epochs=max_epochs)
    trainer = cntk.Trainer(model, (loss_function, accuracy_function),
                           [learner], progress_printer)
    evaluator = cntk.Evaluator(accuracy_function)

    cntk_train(x, y, x_train, y_train, max_epochs, batch_size, trainer,
               evaluator)
Example #3
0
def train_mse_cntk(x, y, model, train_gen, val_gen, epochs, val_steps):
    loss_function = cntk.squared_error(model, y)
    accuracy_function = loss_function
    learner = cntk.adam(model.parameters,
                        cntk.learning_parameter_schedule_per_sample(0.001),
                        cntk.learning_parameter_schedule_per_sample(0.9))
    trainer = cntk.Trainer(model, (loss_function, accuracy_function),
                           [learner])
    evaluator = cntk.Evaluator(accuracy_function)

    history = fit_generator(x,
                            y,
                            model=model,
                            trainer=trainer,
                            evaluator=evaluator,
                            train_gen=train_gen,
                            steps_per_epoch=500,
                            epochs=epochs,
                            val_gen=val_gen,
                            validation_steps=val_steps)

    plot_results(history)
Example #4
0
def use_glove_word_embeddings_cntk(preload_weights=False):
    tokenizer, x_train, y_train, x_val, y_val = from_raw_text_to_word_embeddings(
    )

    x = cntk.input_variable(shape=(Constants.maxlen, ), dtype=np.float32)
    y = cntk.input_variable(shape=(1, ), dtype=np.float32)
    model = cntk.one_hot(x,
                         num_classes=Constants.max_words,
                         sparse_output=True)
    if preload_weights is True:
        embedding_matrix = compute_embedding_matrix(tokenizer)
        assert (Constants.embedding_dim
                == embedding_matrix.shape[0]) or (Constants.embedding_dim
                                                  == embedding_matrix.shape[1])
        model = cntk.layers.Embedding(weights=embedding_matrix)(model)
    else:
        model = cntk.layers.Embedding(Constants.embedding_dim)(model)
    model = cntk.layers.Dense(32, activation=cntk.relu)(model)
    model = cntk.layers.Dense(1, activation=cntk.sigmoid)(model)
    loss_function = cntk.binary_cross_entropy(model.output, y)
    round_predictions = cntk.round(model.output)
    equal_elements = cntk.equal(round_predictions, y)
    accuracy_function = cntk.reduce_mean(equal_elements, axis=0)

    max_epochs = 10
    batch_size = 32
    learner = cntk.adam(model.parameters,
                        cntk.learning_parameter_schedule_per_sample(0.0001),
                        cntk.learning_parameter_schedule_per_sample(0.99))
    progress_printer = cntk.logging.ProgressPrinter(tag='Training',
                                                    num_epochs=max_epochs)
    trainer = cntk.Trainer(model, (loss_function, accuracy_function),
                           [learner], progress_printer)
    evaluator = cntk.Evaluator(accuracy_function)

    cntk_train(x, y, x_train, y_train, max_epochs, batch_size, trainer,
               evaluator)
progress_writer = cntk.logging.ProgressPrinter(
    50)  # helper for logging progress; log every 50 minibatches
trainer = cntk.Trainer(None, criterion, [learner], [progress_writer])

# Train!
for i in range(0, len(X_train), minibatch_size):  # loop over minibatches
    x = X_train[i:i + minibatch_size]  # get one minibatch worth of data
    y = Y_train[i:i + minibatch_size]
    trainer.train_minibatch({
        data: x,
        label_one_hot: y
    })  # update model from one minibatch
trainer.summarize_training_progress()

# Test error rate on the test set.
evaluator = cntk.Evaluator(metric, [progress_writer])
for i in range(0, len(X_test), minibatch_size):  # loop over minibatches
    x = X_test[i:i + minibatch_size]  # get one minibatch worth of data
    y = Y_test[i:i + minibatch_size]
    evaluator.test_minibatch({data: x, label_one_hot: y})  # test one minibatch
evaluator.summarize_test_progress()

# Inspect predictions on one minibatch, for illustration.
# For evaluation, we map the output of the network between 0-1 and convert them into probabilities
# for the two classes. We use a softmax function to get the probabilities of each of the class.
get_probability = cntk.softmax(model)

X_check, Y_check = generate_synthetic_data(25)  # a small batch of 25 examples
result = get_probability.eval(X_check)

print("Label    :", [label.todense().argmax() for label in Y_check])
Example #6
0
def run_experiment_cntk():
    if os.path.isfile('x_train_imdb.bin'):
        print('Loading from .bin files')
        x_train, y_train, x_test, y_test = load_from_files(x_shape=(25000,
                                                                    500),
                                                           y_shape=(25000, ))
    else:
        print('Loading data...')
        (x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(
            num_words=Constants.max_words)
        print(len(x_train), 'train sequences')
        print(len(x_test), 'test sequences')

        print('Pad sequences (samples x time)')
        x_train = keras.preprocessing.sequence.pad_sequences(
            x_train, maxlen=Constants.maxlen)
        x_test = keras.preprocessing.sequence.pad_sequences(
            x_test, maxlen=Constants.maxlen)
        print('x_train shape:', x_train.shape)
        print('x_test shape:', x_test.shape)
        print('Saving to .bin files')
        save_to_files(x_train, y_train, x_test, y_test)

    x = cntk.sequence.input_variable(shape=(), dtype=np.float32)
    y = cntk.input_variable(shape=(), dtype=np.float32)
    x_placeholder = cntk.placeholder(shape=(),
                                     dynamic_axes=[
                                         cntk.Axis.default_batch_axis(),
                                         cntk.Axis.default_dynamic_axis()
                                     ])

    model = cntk.one_hot(x_placeholder,
                         num_classes=Constants.max_words,
                         sparse_output=True)
    model = cntk.layers.Embedding(Constants.embedding_dim)(model)
    model = cntk.layers.Recurrence(cntk.layers.LSTM(32))(model)
    model = cntk.sequence.last(model)
    model = cntk.layers.Dense(1, activation=cntk.sigmoid)(model)
    model.save('ch6-2.cntk.model')
    model = None
    model = cntk.load_model('ch6-2.cntk.model')
    model.replace_placeholders({model.placeholders[0]: x})

    loss_function = cntk.binary_cross_entropy(model.output, y)
    round_predictions = cntk.round(model.output)
    equal_elements = cntk.equal(round_predictions, y)
    accuracy_function = cntk.reduce_mean(equal_elements,
                                         axis=cntk.Axis.all_static_axes())

    max_epochs = 10
    batch_size = 128
    learner = cntk.adam(model.parameters,
                        cntk.learning_parameter_schedule_per_sample(0.01),
                        cntk.learning_parameter_schedule_per_sample(0.9))
    progress_printer = cntk.logging.ProgressPrinter(tag='Training',
                                                    num_epochs=max_epochs)
    trainer = cntk.Trainer(model, (loss_function, accuracy_function),
                           [learner], progress_printer)
    evaluator = cntk.Evaluator(accuracy_function)

    cntk_train(x, y, x_train, y_train, max_epochs, batch_size, trainer,
               evaluator)