def test_updates_optimization_tables(self, cursor): self.override_recent_date() # Call the command line script. args = ['--log-format', 'plain', testing.config_uri(), TEST_VARNISH_LOG] from cnxarchive.scripts.hits_counter import main main(args) # Check the optimization tables for content. cursor.execute("SELECT count(*) from recent_hit_ranks;") recent_count = cursor.fetchone()[0] cursor.execute("SELECT count(*) from overall_hit_ranks;") overall_count = cursor.fetchone()[0] self.assertTrue(recent_count > 0) self.assertTrue(overall_count > 0)
def test_updates_optimization_tables(self, cursor): self.override_recent_date() # Call the command line script. args = [ '--log-format', 'plain', testing.config_uri(), TEST_VARNISH_LOG ] from cnxarchive.scripts.hits_counter import main main(args) # Check the optimization tables for content. cursor.execute("SELECT count(*) from recent_hit_ranks;") recent_count = cursor.fetchone()[0] cursor.execute("SELECT count(*) from overall_hit_ranks;") overall_count = cursor.fetchone()[0] self.assertTrue(recent_count > 0) self.assertTrue(overall_count > 0)
def test_insertion(self, cursor): # Call the command line script. args = ['--log-format', 'plain', testing.config_uri(), TEST_VARNISH_LOG] from cnxarchive.scripts.hits_counter import main return_code = main(args) self.assertEqual(return_code, 0) expectations = [[1, 3], [2, 1], [3, 4], [4, 1]] # Check for the insertion of data. cursor.execute("SELECT documentid, hits " " FROM document_hits;") hits = cursor.fetchall() hits = sorted(hits) self.assertEqual(hits, expectations)
def test_insertion(self, cursor): # Call the command line script. args = [ '--log-format', 'plain', testing.config_uri(), TEST_VARNISH_LOG ] from cnxarchive.scripts.hits_counter import main return_code = main(args) self.assertEqual(return_code, 0) expectations = [(1, 3), (2, 1), (3, 4), (4, 1)] # Check for the insertion of data. cursor.execute("SELECT documentid, hits " " FROM document_hits;") hits = cursor.fetchall() hits = sorted(hits) self.assertEqual(hits, expectations)