Example #1
0
def opt_runner(robot_params_dict, free_dict, blocks):
    # Load the robot params
    robot_params = RobotParams()
    robot_params.configure(robot_params_dict)

    for block in blocks:
        block.update_config(robot_params)

    # Load the free configuration
    free_list = robot_params.calc_free(free_dict)
    expanded_param_vec = robot_params.deflate()

    error_calc = ErrorCalc(robot_params, expanded_param_vec, free_list, blocks)

    # Construct the initial guess
    opt_guess_mat = expanded_param_vec[numpy.where(free_list), 0].copy()
    opt_guess = numpy.array(opt_guess_mat)[0]

    import scipy.optimize
    x, cov_x, infodict, mesg, iter = scipy.optimize.leastsq(
        error_calc.calculate_error, opt_guess.copy(), full_output=1)

    # A hacky way to inflate x back into robot params
    full_param_vec = error_calc.calculate_full_param_vec(x)

    output_dict = error_calc._robot_params.params_to_config(full_param_vec)

    # Compute the rms error
    final_error = error_calc.calculate_error(x)
    rms_error = numpy.sqrt(numpy.mean(final_error**2))
    print "RMS Error: %f" % rms_error

    return output_dict
def opt_runner(robot_params_dict, free_dict, blocks):
    # Load the robot params
    robot_params = RobotParams()
    robot_params.configure(robot_params_dict)

    for block in blocks:
        block.update_config(robot_params)

    # Load the free configuration
    free_list = robot_params.calc_free(free_dict)
    expanded_param_vec = robot_params.deflate()

    error_calc = ErrorCalc(robot_params, expanded_param_vec, free_list, blocks)

    # Construct the initial guess
    opt_guess_mat = expanded_param_vec[numpy.where(free_list), 0].copy()
    opt_guess = numpy.array(opt_guess_mat)[0]

    import scipy.optimize
    x, cov_x, infodict, mesg, iter = scipy.optimize.leastsq(error_calc.calculate_error, opt_guess.copy(), full_output=1)

    # A hacky way to inflate x back into robot params
    full_param_vec = error_calc.calculate_full_param_vec(x)

    output_dict = error_calc._robot_params.params_to_config(full_param_vec)

    # Compute the rms error
    final_error = error_calc.calculate_error(x)
    rms_error = numpy.sqrt( numpy.mean(final_error**2) )
    print "RMS Error: %f" % rms_error

    return output_dict
    def load(self):
        config = yaml.load('''
                chain_id: chainA
                before_chain: [transformA]
                dh_link_num:  1
                after_chain:  [transformB]
            ''')

        robot_params = RobotParams()
        robot_params.configure(
            yaml.load('''
            dh_chains:
              chainA:
                dh:
                - [ 0, 0, 1, 0 ]
                gearing: [1]
                cov:
                  joint_angles: [1]
            tilting_lasers: {}
            rectified_cams: {}
            transforms:
                transformA: [0, 0, 0, 0, 0, 0]
                transformB: [0, 0, 0, 0, 0, 0]
            checkerboards:
              boardA:
                corners_x: 2
                corners_y: 2
                spacing_x: 1
                spacing_y: 1
            '''))
        return config, robot_params
    def load(self):
        config = yaml.load('''
                chain_id: chainA
                before_chain: [transformA]
                dh_link_num:  1
                after_chain:  [transformB]
            ''')

        robot_params = RobotParams()
        robot_params.configure( yaml.load('''
            dh_chains:
              chainA:
                dh:
                - [ 0, 0, 1, 0 ]
                gearing: [1]
                cov:
                  joint_angles: [1]
            tilting_lasers: {}
            rectified_cams: {}
            transforms:
                transformA: [0, 0, 0, 0, 0, 0]
                transformB: [0, 0, 0, 0, 0, 0]
            checkerboards:
              boardA:
                corners_x: 2
                corners_y: 2
                spacing_x: 1
                spacing_y: 1
            ''' ) )
        return config, robot_params
    def test_params_to_config(self):
        robot_params = RobotParams()
        robot_params.configure(loadConfigDict())
        config = robot_params.params_to_config(loadParamVec())
        self.assertAlmostEqual(config["dh_chains"]["chain2"]['dh'][1][1], 10, 6)
        self.assertAlmostEqual(config["rectified_cams"]["camA"]["baseline_shift"], 4, 6)
#        self.assertAlmostEqual(config["tilting_lasers"]["laserA"]["before_joint"][1], 20, 6)
        self.assertAlmostEqual(config["checkerboards"]["boardA"]["spacing_y"], 40)
Example #6
0
    def test_deflate(self):
        robot_params = RobotParams()
        robot_params.configure(loadConfigDict())

        p = loadParamVec()
        robot_params.inflate(p)

        result = robot_params.deflate()
        self.assertAlmostEqual(numpy.linalg.norm(p - result), 0.0, 6)
    def test_deflate(self):
        robot_params = RobotParams()
        robot_params.configure(loadConfigDict())

        p = loadParamVec()
        robot_params.inflate(p)

        result = robot_params.deflate()
        self.assertAlmostEqual(numpy.linalg.norm(p - result), 0.0, 6)
 def test_free(self):
     robot_params = RobotParams()
     robot_params.configure(loadConfigDict())
     free_list = robot_params.calc_free(loadFreeDict())
     print free_list
     self.assertEqual(free_list[0], True)
     self.assertEqual(free_list[1], False)
     self.assertEqual(free_list[18], True)
     self.assertEqual(free_list[19], False)
     self.assertEqual(free_list[27], True)
Example #9
0
 def test_free(self):
     robot_params = RobotParams()
     robot_params.configure(loadConfigDict())
     free_list = robot_params.calc_free(loadFreeDict())
     print free_list
     self.assertEqual(free_list[0], True)
     self.assertEqual(free_list[1], False)
     self.assertEqual(free_list[18], True)
     self.assertEqual(free_list[19], False)
     self.assertEqual(free_list[27], True)
Example #10
0
 def test_params_to_config(self):
     robot_params = RobotParams()
     robot_params.configure(loadConfigDict())
     config = robot_params.params_to_config(loadParamVec())
     self.assertAlmostEqual(config["dh_chains"]["chain2"]['dh'][1][1], 10,
                            6)
     self.assertAlmostEqual(
         config["rectified_cams"]["camA"]["baseline_shift"], 4, 6)
     #        self.assertAlmostEqual(config["tilting_lasers"]["laserA"]["before_joint"][1], 20, 6)
     self.assertAlmostEqual(config["checkerboards"]["boardA"]["spacing_y"],
                            40)
    def test_inflate(self):
        robot_params = RobotParams()
        robot_params.configure(loadConfigDict())
        robot_params.inflate(loadParamVec())

        self.assertEqual(robot_params.dh_chains["chain1"]._config[0,0], -10)
        self.assertEqual(robot_params.dh_chains["chain2"]._config[1,1],  10)
#        self.assertEqual(robot_params.tilting_lasers["laserA"]._before_joint.transform[1,3], 20)
#        self.assertEqual(robot_params.tilting_lasers["laserA"]._after_joint.transform[2,3],  30)
        self.assertEqual(robot_params.transforms["transformA"].transform[0,3],  40)
        self.assertEqual(robot_params.rectified_cams["camA"]._config['baseline_shift'],  4)
        self.assertEqual(robot_params.checkerboards["boardA"]._spacing_x,  30)
Example #12
0
def opt_runner(robot_params_dict, pose_guess_arr, free_dict, multisensors,
               use_cov):
    """
    Runs a single optimization step for the calibration optimization.
      robot_params_dict - Dictionary storing all of the system primitives' parameters (lasers, cameras, chains, transforms, etc)
      free_dict - Dictionary storing which parameters are free
      multisensor - list of list of measurements. Each multisensor corresponds to a single checkerboard pose
      pose_guesses - List of guesses as to where all the checkerboard are. This is used to initialze the optimization
    """

    # Load the robot params
    robot_params = RobotParams()
    robot_params.configure(robot_params_dict)

    error_calc = ErrorCalc(robot_params, free_dict, multisensors, use_cov)

    # Construct the initial guess
    opt_all = build_opt_vector(robot_params, free_dict, pose_guess_arr)

    x, cov_x, infodict, mesg, iter = scipy.optimize.leastsq(
        error_calc.calculate_error,
        opt_all,
        Dfun=error_calc.calculate_jacobian,
        full_output=1)
    #x = opt_all
    #error_calc.calculate_error(x)

    J = error_calc.calculate_jacobian(x)

    # A hacky way to inflate x back into robot params
    opt_param_vec, pose_vec = error_calc.split_all(x)
    expanded_param_vec = error_calc.calculate_full_param_vec(opt_param_vec)
    opt_pose_arr = reshape(pose_vec, [-1, 6])

    output_dict = error_calc._robot_params.params_to_config(expanded_param_vec)

    errors_dict = compute_errors_breakdown(error_calc, multisensors,
                                           opt_pose_arr)

    print ""
    print "Errors Breakdown:"
    for sensor_id, error_list in errors_dict.items():
        error_cat = numpy.concatenate(error_list)
        rms_error = numpy.sqrt(numpy.mean(error_cat**2))
        print "  %s: %.6f" % (sensor_id, rms_error)

    # Compute the rms error
    #final_error = error_calc.calculate_error(x)
    #rms_error = numpy.sqrt( numpy.mean(final_error**2) )
    #print "RMS Error: %f" % rms_error

    return output_dict, opt_pose_arr, J
Example #13
0
 def __init__(self, name):
     path ="/u/robot/git/care-o-bot/src/cob_calibration/cob_calibration_config/cob3-8/"
     with open(path+"autogenerated/system.yaml", "r") as f:
         system =yaml.safe_load(f)
     with open(path+"user_defined/sensors.yaml", "r") as f:
         sensors =yaml.safe_load(f)
     r = RobotParams()
     r.configure(system)
     self.full_chain = FullChainRobotParams(sensors["camera_chains"][0]["chain"], sensors)
     self.full_chain.update_config(r)
     self.calc_block = self.full_chain.calc_block
     self.state=None
     self.name = name
Example #14
0
    def test_inflate(self):
        robot_params = RobotParams()
        robot_params.configure(loadConfigDict())
        robot_params.inflate(loadParamVec())

        self.assertEqual(robot_params.dh_chains["chain1"]._config[0, 0], -10)
        self.assertEqual(robot_params.dh_chains["chain2"]._config[1, 1], 10)
        #        self.assertEqual(robot_params.tilting_lasers["laserA"]._before_joint.transform[1,3], 20)
        #        self.assertEqual(robot_params.tilting_lasers["laserA"]._after_joint.transform[2,3],  30)
        self.assertEqual(robot_params.transforms["transformA"].transform[0, 3],
                         40)
        self.assertEqual(
            robot_params.rectified_cams["camA"]._config['baseline_shift'], 4)
        self.assertEqual(robot_params.checkerboards["boardA"]._spacing_x, 30)
Example #15
0
def opt_runner(robot_params_dict, pose_guess_arr, free_dict, multisensors, use_cov):
    """
    Runs a single optimization step for the calibration optimization.
      robot_params_dict - Dictionary storing all of the system primitives' parameters (lasers, cameras, chains, transforms, etc)
      free_dict - Dictionary storing which parameters are free
      multisensor - list of list of measurements. Each multisensor corresponds to a single checkerboard pose
      pose_guesses - List of guesses as to where all the checkerboard are. This is used to initialze the optimization
    """

    # Load the robot params
    robot_params = RobotParams()
    robot_params.configure(robot_params_dict)

    error_calc = ErrorCalc(robot_params, free_dict, multisensors, use_cov)

    # Construct the initial guess
    opt_all = build_opt_vector(robot_params, free_dict, pose_guess_arr)

    x, cov_x, infodict, mesg, iter = scipy.optimize.leastsq(error_calc.calculate_error, opt_all, Dfun=error_calc.calculate_jacobian, full_output=1)
    #x = opt_all
    #error_calc.calculate_error(x)

    J = error_calc.calculate_jacobian(x)

    # A hacky way to inflate x back into robot params
    opt_param_vec, pose_vec = error_calc.split_all(x)
    expanded_param_vec = error_calc.calculate_full_param_vec(opt_param_vec)
    opt_pose_arr = reshape(pose_vec, [-1, 6])

    output_dict = error_calc._robot_params.params_to_config(expanded_param_vec)

    errors_dict = compute_errors_breakdown(error_calc, multisensors, opt_pose_arr)

    print ""
    print "Errors Breakdown:"
    for sensor_id, error_list in errors_dict.items():
        error_cat = numpy.concatenate(error_list)
        rms_error = numpy.sqrt( numpy.mean(error_cat**2) )
        print "  %s: %.6f" % (sensor_id, rms_error)


    # Compute the rms error
    #final_error = error_calc.calculate_error(x)
    #rms_error = numpy.sqrt( numpy.mean(final_error**2) )
    #print "RMS Error: %f" % rms_error

    return output_dict, opt_pose_arr, J
    def load(self):
        config = yaml.load('''
            camera_id: camA
            chain:
              before_chain: [transformA]
              chain_id:     chainA
              dh_link_num:  1
              after_chain:  [transformB]
            ''')

        robot_params = RobotParams()
        robot_params.configure( yaml.load('''
            dh_chains:
              chainA:
                dh:
                  - [ 0, 0, 1, 0 ]
                gearing: [1]
                cov:
                  joint_angles: [1.0]
              chainB:
                dh:
                  - [ 0, 0, 2, 0 ]
                gearing: [1]
                cov:
                  joint_angles: [1.0]
            tilting_lasers: {}
            rectified_cams:
              camA:
                baseline_shift: 0.0
                f_shift: 0.0
                cx_shift: 0.0
                cy_shift: 0.0
                cov: {u: 1.0, v: 1.0}
            transforms:
                transformA: [0, 0, 0, 0, 0, 0]
                transformB: [0, 0, 0, 0, 0, 0]
                transformC: [0, 0, 0, 0, 0, 0]
                transformD: [0, 0, 0, 0, 0, 0]
            checkerboards: {}
            ''' ) )

        P = [ 1, 0, 0, 0,
              0, 1, 0, 0,
              0, 0, 1, 0 ]

        return config, robot_params, P
Example #17
0
    def load(self):
        config = yaml.load('''
            camera_id: camA
            chain:
              before_chain: [transformA]
              chain_id:     chainA
              dh_link_num:  1
              after_chain:  [transformB]
            ''')

        robot_params = RobotParams()
        robot_params.configure(
            yaml.load('''
            dh_chains:
              chainA:
                dh:
                  - [ 0, 0, 1, 0 ]
                gearing: [1]
                cov:
                  joint_angles: [1.0]
              chainB:
                dh:
                  - [ 0, 0, 2, 0 ]
                gearing: [1]
                cov:
                  joint_angles: [1.0]
            tilting_lasers: {}
            rectified_cams:
              camA:
                baseline_shift: 0.0
                f_shift: 0.0
                cx_shift: 0.0
                cy_shift: 0.0
                cov: {u: 1.0, v: 1.0}
            transforms:
                transformA: [0, 0, 0, 0, 0, 0]
                transformB: [0, 0, 0, 0, 0, 0]
                transformC: [0, 0, 0, 0, 0, 0]
                transformD: [0, 0, 0, 0, 0, 0]
            checkerboards: {}
            '''))

        P = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0]

        return config, robot_params, P
Example #18
0
    def test_configure(self):
        robot_params = RobotParams()

        robot_params.configure(loadConfigDict())

        #        print "laser start: %u" % robot_params.tilting_lasers["laserA"].start
        #        print "laser end:   %u" % robot_params.tilting_lasers["laserA"].end

        print "transform start: %u" % robot_params.transforms[
            "transformA"].start
        print "transform end:   %u" % robot_params.transforms["transformA"].end

        print "cam start: %u" % robot_params.rectified_cams["camA"].start
        print "cam end:   %u" % robot_params.rectified_cams["camA"].end

        # ****** DH Chains ******
        self.assertEqual(robot_params.dh_chains["chain1"].start, 15)
        self.assertEqual(robot_params.dh_chains["chain1"].end, 25)

        self.assertEqual(robot_params.dh_chains["chain2"].start, 0)
        self.assertEqual(robot_params.dh_chains["chain2"].end, 15)

        # ****** Tilting Lasers ******
        #        self.assertEqual(robot_params.tilting_lasers["laserA"].start, 25)
        #        self.assertEqual(robot_params.tilting_lasers["laserA"].end,   38)

        # ****** Transforms ******
        self.assertEqual(robot_params.transforms["transformA"].start, 25)
        self.assertEqual(robot_params.transforms["transformA"].end, 31)

        # ****** Rectified Cams ******
        self.assertEqual(robot_params.rectified_cams["camA"].start, 31)
        self.assertEqual(robot_params.rectified_cams["camA"].end, 35)

        # ****** Checkerboards ******
        self.assertEqual(robot_params.checkerboards["boardA"].start, 35)
        self.assertEqual(robot_params.checkerboards["boardA"].end, 37)
    def test_configure(self):
        robot_params = RobotParams()

        robot_params.configure(loadConfigDict())

#        print "laser start: %u" % robot_params.tilting_lasers["laserA"].start
#        print "laser end:   %u" % robot_params.tilting_lasers["laserA"].end

        print "transform start: %u" % robot_params.transforms["transformA"].start
        print "transform end:   %u" % robot_params.transforms["transformA"].end

        print "cam start: %u" % robot_params.rectified_cams["camA"].start
        print "cam end:   %u" % robot_params.rectified_cams["camA"].end

        # ****** DH Chains ******
        self.assertEqual(robot_params.dh_chains["chain1"].start, 15)
        self.assertEqual(robot_params.dh_chains["chain1"].end,   25)

        self.assertEqual(robot_params.dh_chains["chain2"].start,  0)
        self.assertEqual(robot_params.dh_chains["chain2"].end,   15)

        # ****** Tilting Lasers ******
#        self.assertEqual(robot_params.tilting_lasers["laserA"].start, 25)
#        self.assertEqual(robot_params.tilting_lasers["laserA"].end,   38)

        # ****** Transforms ******
        self.assertEqual(robot_params.transforms["transformA"].start, 25)
        self.assertEqual(robot_params.transforms["transformA"].end,   31)

        # ****** Rectified Cams ******
        self.assertEqual(robot_params.rectified_cams["camA"].start, 31)
        self.assertEqual(robot_params.rectified_cams["camA"].end,   35)

        # ****** Checkerboards ******
        self.assertEqual(robot_params.checkerboards["boardA"].start, 35)
        self.assertEqual(robot_params.checkerboards["boardA"].end,   37)