Example #1
0
def cluster_distance(cluster1, cluster2, distance_agg=min):
    """finds the aggregate distance between elements of cluster1
    and elements of cluster2"""
    return distance_agg([
        distance(input1, input2) for input1 in get_values(cluster1)
        for input2 in get_values(cluster2)
    ])
Example #2
0
def knn_classify(k, labeled_points, new_point):
    """each labeled point should be a pair (point, label)"""
    
    # order the labeled points from nearest to farthest
    by_distance = sorted(labeled_points,
                         key=lambda (point, _): distance(point, new_point))

    # find the labels for the k closest
    k_nearest_labels = [label for _, label in by_distance[:k]]

    # and let them vote
    return majority_vote(k_nearest_labels)
Example #3
0
                               y, theta_0, alpha_0)


if __name__ == "__main__":

    print "using the gradient"

    v = [random.randint(-10, 10) for i in range(3)]

    tolerance = 0.0000001
    count = 0
    while True:
        #print v, sum_of_squares(v)
        gradient = sum_of_squares_gradient(v)  # compute the gradient at v
        next_v = step(v, gradient, -0.01)  # take a negative gradient step
        if distance(next_v, v) < tolerance:  # stop if we're converging
            break
        v = next_v  # continue if we're not
        # print v
        count += 1
        print(str(sum_of_squares(v)) + str(v))
    print "count=" + str(count)

    print "minimum v", v
    print "minimum value", sum_of_squares(v)
    print

    print "using minimize_batch"

    v = [random.randint(-10, 10) for i in range(3)]
Example #4
0
def random_distances(dim, num_pairs):
    return [distance(random_point(dim), random_point(dim))
            for _ in range(num_pairs)]