Example #1
0
    def __init__(self,
                 ply_dir,
                 device,
                 Normalize_=None,
                 is_full_size=False,
                 scale=None):

        ply_numpy_list = []
        ply_numpy_list_lable = []
        for fil in ply_dir:

            pc = ObjLoader.load_point_cloud(fil)
            pc.vertices = pc.vertices.astype('float16')

            #pc.colors = pc.colors.astype('float16')
            if scale:
                ply_numpy_list.append(
                    NNdataProcess.transform_scaling(pc.vertices,
                                                    Original_dimension=1024,
                                                    scale_factor=scale))
            else:
                ply_numpy_list.append(
                    NNdataProcess.transform(
                        pc.vertices, is_full_size=is_full_size))  #,pc.colors))

        self.Tensor_ply_list = torch.from_numpy(np.array(ply_numpy_list)).type(
            torch.FloatTensor).to(device)
Example #2
0
def tensor_to_ply(tensor,
                  threshold,
                  save_dir,
                  scale_factor=None,
                  Original_dimension=1024):
    return NNdataProcess.tensor_to_ply(tensor,
                                       threshold,
                                       save_dir,
                                       scale_factor=scale_factor,
                                       Original_dimension=Original_dimension)
Example #3
0
def Create_Dataset():

    raw_ply = config.pathToLongdress2Ply
    lable_dir = config.pathToLongdress2Compressed_Ply
    save_dir = config.pathToLongdress2RNNTrain
    NNdataProcess.create_training_sequence_list_wise_for_RNN(raw_ply, lable_dir, save_dir)
 def get_training_data(self, testPart, data_dir):
     return NNdataProcess.get_data(testPart=testPart,
                                   data_dir=data_dir,
                                   is_return_dir=True)