def get_restriction_kernel(fiat_element, unique_indices, dim=1, no_weights=False): weights = get_restriction_weights(fiat_element)[unique_indices].T ncdof = weights.shape[0] nfdof = weights.shape[1] arglist = [ast.Decl("double", ast.Symbol("coarse", (ncdof*dim, ))), ast.Decl("double", ast.Symbol("*restrict *restrict fine", ()), qualifiers=["const"])] if not no_weights: arglist.append(ast.Decl("double", ast.Symbol("*restrict *restrict count_weights", ()), qualifiers=["const"])) all_ones = np.allclose(weights, 1.0) if all_ones: w = [] else: w_sym = ast.Symbol("weights", (ncdof, nfdof)) init = ast.ArrayInit(format_array_literal(weights)) w = [ast.Decl("double", w_sym, init, qualifiers=["const"])] i = ast.Symbol("i", ()) j = ast.Symbol("j", ()) k = ast.Symbol("k", ()) fine = ast.Symbol("fine", (j, k)) if no_weights: if all_ones: assign = fine else: assign = ast.Prod(fine, ast.Symbol("weights", (i, j))) else: if all_ones: assign = ast.Prod(fine, ast.Symbol("count_weights", (j, 0))) else: assign = ast.Prod(fine, ast.Prod(ast.Symbol("weights", (i, j)), ast.Symbol("count_weights", (j, 0)))) assignment = ast.Incr(ast.Symbol("coarse", (ast.Sum(k, ast.Prod(i, ast.c_sym(dim))),)), assign) k_loop = ast.For(ast.Decl("int", k, ast.c_sym(0)), ast.Less(k, ast.c_sym(dim)), ast.Incr(k, ast.c_sym(1)), ast.Block([assignment], open_scope=True)) j_loop = ast.For(ast.Decl("int", j, ast.c_sym(0)), ast.Less(j, ast.c_sym(nfdof)), ast.Incr(j, ast.c_sym(1)), ast.Block([k_loop], open_scope=True)) i_loop = ast.For(ast.Decl("int", i, ast.c_sym(0)), ast.Less(i, ast.c_sym(ncdof)), ast.Incr(i, ast.c_sym(1)), ast.Block([j_loop], open_scope=True)) k = ast.FunDecl("void", "restriction", arglist, ast.Block(w + [i_loop]), pred=["static", "inline"]) return op2.Kernel(k, "restriction", opts=parameters["coffee"])
def get_restriction_kernel(fiat_element, unique_indices, dim=1, no_weights=False): weights = restriction_weights(fiat_element)[unique_indices].T ncdof = weights.shape[0] nfdof = weights.shape[1] arglist = [ast.Decl("double", ast.Symbol("coarse", (ncdof*dim, ))), ast.Decl("double *restrict *restrict ", ast.Symbol("fine", ()), qualifiers=["const"])] if not no_weights: arglist.append(ast.Decl("double *restrict *restrict", ast.Symbol("count_weights", ()), qualifiers=["const"])) all_ones = np.allclose(weights, 1.0) if all_ones: w = [] else: w_sym = ast.Symbol("weights", (ncdof, nfdof)) init = ast.ArrayInit(format_array_literal(weights)) w = [ast.Decl("double", w_sym, init, qualifiers=["const"])] i = ast.Symbol("i", ()) j = ast.Symbol("j", ()) k = ast.Symbol("k", ()) fine = ast.Symbol("fine", (j, k)) if no_weights: if all_ones: assign = fine else: assign = ast.Prod(fine, ast.Symbol("weights", (i, j))) else: if all_ones: assign = ast.Prod(fine, ast.Symbol("count_weights", (j, 0))) else: assign = ast.Prod(fine, ast.Prod(ast.Symbol("weights", (i, j)), ast.Symbol("count_weights", (j, 0)))) assignment = ast.Incr(ast.Symbol("coarse", (ast.Sum(k, ast.Prod(i, ast.c_sym(dim))),)), assign) k_loop = ast.For(ast.Decl("int", k, ast.c_sym(0)), ast.Less(k, ast.c_sym(dim)), ast.Incr(k, ast.c_sym(1)), ast.Block([assignment], open_scope=True)) j_loop = ast.For(ast.Decl("int", j, ast.c_sym(0)), ast.Less(j, ast.c_sym(nfdof)), ast.Incr(j, ast.c_sym(1)), ast.Block([k_loop], open_scope=True)) i_loop = ast.For(ast.Decl("int", i, ast.c_sym(0)), ast.Less(i, ast.c_sym(ncdof)), ast.Incr(i, ast.c_sym(1)), ast.Block([j_loop], open_scope=True)) k = ast.FunDecl("void", "restriction", arglist, ast.Block(w + [i_loop]), pred=["static", "inline"]) return op2.Kernel(k, "restriction", opts=parameters["coffee"])
def get_count_kernel(arity): arglist = [ast.Decl("double", ast.Symbol("weight", (arity, )))] i = ast.Symbol("i", ()) assignment = ast.Incr(ast.Symbol("weight", (i, )), ast.c_sym(1.0)) loop = ast.For(ast.Decl("int", i, ast.c_sym(0)), ast.Less(i, ast.c_sym(arity)), ast.Incr(i, ast.c_sym(1)), ast.Block([assignment], open_scope=True)) k = ast.FunDecl("void", "count_weights", arglist, ast.Block([loop]), pred=["static", "inline"]) return op2.Kernel(k, "count_weights", opts=parameters["coffee"])
def get_injection_kernel(fiat_element, unique_indices, dim=1): weights = injection_weights(fiat_element)[unique_indices].T ncdof = weights.shape[0] nfdof = weights.shape[1] # What if we have multiple nodes in same location (DG)? Divide by # rowsum. weights = weights / np.sum(weights, axis=1).reshape(-1, 1) all_same = np.allclose(weights, weights[0, 0]) arglist = [ ast.Decl("double", ast.Symbol("coarse", (ncdof * dim, ))), ast.Decl("double *restrict *restrict ", ast.Symbol("fine", ()), qualifiers=["const"]) ] if all_same: w_sym = ast.Symbol("weights", ()) w = [ast.Decl("double", w_sym, weights[0, 0], qualifiers=["const"])] else: init = ast.ArrayInit(format_array_literal(weights)) w_sym = ast.Symbol("weights", (ncdof, nfdof)) w = [ast.Decl("double", w_sym, init, qualifiers=["const"])] i = ast.Symbol("i", ()) j = ast.Symbol("j", ()) k = ast.Symbol("k", ()) if all_same: assign = ast.Prod(ast.Symbol("fine", (j, k)), w_sym) else: assign = ast.Prod(ast.Symbol("fine", (j, k)), ast.Symbol("weights", (i, j))) assignment = ast.Incr( ast.Symbol("coarse", (ast.Sum(k, ast.Prod(i, ast.c_sym(dim))), )), assign) k_loop = ast.For(ast.Decl("int", k, ast.c_sym(0)), ast.Less(k, ast.c_sym(dim)), ast.Incr(k, ast.c_sym(1)), ast.Block([assignment], open_scope=True)) j_loop = ast.For(ast.Decl("int", j, ast.c_sym(0)), ast.Less(j, ast.c_sym(nfdof)), ast.Incr(j, ast.c_sym(1)), ast.Block([k_loop], open_scope=True)) i_loop = ast.For(ast.Decl("int", i, ast.c_sym(0)), ast.Less(i, ast.c_sym(ncdof)), ast.Incr(i, ast.c_sym(1)), ast.Block([j_loop], open_scope=True)) k = ast.FunDecl("void", "injection", arglist, ast.Block(w + [i_loop]), pred=["static", "inline"]) return op2.Kernel(k, "injection", opts=parameters["coffee"])
def get_injection_kernel(fiat_element, unique_indices, dim=1): weights = get_injection_weights(fiat_element)[unique_indices].T ncdof = weights.shape[0] nfdof = weights.shape[1] # What if we have multiple nodes in same location (DG)? Divide by # rowsum. weights = weights / np.sum(weights, axis=1).reshape(-1, 1) all_same = np.allclose(weights, weights[0, 0]) arglist = [ast.Decl("double", ast.Symbol("coarse", (ncdof*dim, ))), ast.Decl("double", ast.Symbol("*restrict *restrict fine", ()), qualifiers=["const"])] if all_same: w_sym = ast.Symbol("weights", ()) w = [ast.Decl("double", w_sym, weights[0, 0], qualifiers=["const"])] else: init = ast.ArrayInit(format_array_literal(weights)) w_sym = ast.Symbol("weights", (ncdof, nfdof)) w = [ast.Decl("double", w_sym, init, qualifiers=["const"])] i = ast.Symbol("i", ()) j = ast.Symbol("j", ()) k = ast.Symbol("k", ()) if all_same: assign = ast.Prod(ast.Symbol("fine", (j, k)), w_sym) else: assign = ast.Prod(ast.Symbol("fine", (j, k)), ast.Symbol("weights", (i, j))) assignment = ast.Incr(ast.Symbol("coarse", (ast.Sum(k, ast.Prod(i, ast.c_sym(dim))),)), assign) k_loop = ast.For(ast.Decl("int", k, ast.c_sym(0)), ast.Less(k, ast.c_sym(dim)), ast.Incr(k, ast.c_sym(1)), ast.Block([assignment], open_scope=True)) j_loop = ast.For(ast.Decl("int", j, ast.c_sym(0)), ast.Less(j, ast.c_sym(nfdof)), ast.Incr(j, ast.c_sym(1)), ast.Block([k_loop], open_scope=True)) i_loop = ast.For(ast.Decl("int", i, ast.c_sym(0)), ast.Less(i, ast.c_sym(ncdof)), ast.Incr(i, ast.c_sym(1)), ast.Block([j_loop], open_scope=True)) k = ast.FunDecl("void", "injection", arglist, ast.Block(w + [i_loop]), pred=["static", "inline"]) return op2.Kernel(k, "injection", opts=parameters["coffee"])
def get_prolongation_kernel(fiat_element, unique_indices, dim=1): weights = get_restriction_weights(fiat_element)[unique_indices] nfdof = weights.shape[0] ncdof = weights.shape[1] arglist = [ ast.Decl("double", ast.Symbol("fine", (nfdof * dim, ))), ast.Decl("double", ast.Symbol("*restrict *restrict coarse", ()), qualifiers=["const"]) ] all_same = np.allclose(weights, weights[0, 0]) if all_same: w_sym = ast.Symbol("weights", ()) w = [ast.Decl("double", w_sym, weights[0, 0], qualifiers=["const"])] else: w_sym = ast.Symbol("weights", (nfdof, ncdof)) init = ast.ArrayInit(format_array_literal(weights)) w = [ast.Decl("double", w_sym, init, qualifiers=["const"])] i = ast.Symbol("i", ()) j = ast.Symbol("j", ()) k = ast.Symbol("k", ()) if all_same: assign = ast.Prod(ast.Symbol("coarse", (j, k)), w_sym) else: assign = ast.Prod(ast.Symbol("coarse", (j, k)), ast.Symbol("weights", (i, j))) assignment = ast.Incr( ast.Symbol("fine", (ast.Sum(k, ast.Prod(i, ast.c_sym(dim))), )), assign) k_loop = ast.For(ast.Decl("int", k, ast.c_sym(0)), ast.Less(k, ast.c_sym(dim)), ast.Incr(k, ast.c_sym(1)), ast.Block([assignment], open_scope=True)) j_loop = ast.For(ast.Decl("int", j, ast.c_sym(0)), ast.Less(j, ast.c_sym(ncdof)), ast.Incr(j, ast.c_sym(1)), ast.Block([k_loop], open_scope=True)) i_loop = ast.For(ast.Decl("int", i, ast.c_sym(0)), ast.Less(i, ast.c_sym(nfdof)), ast.Incr(i, ast.c_sym(1)), ast.Block([j_loop], open_scope=True)) k = ast.FunDecl("void", "prolongation", arglist, ast.Block(w + [i_loop]), pred=["static", "inline"]) return op2.Kernel(k, "prolongation", opts=parameters["coffee"])
def get_prolongation_kernel(fiat_element, unique_indices, dim=1): weights = restriction_weights(fiat_element)[unique_indices] nfdof = weights.shape[0] ncdof = weights.shape[1] arglist = [ast.Decl("double", ast.Symbol("fine", (nfdof*dim, ))), ast.Decl("double *restrict *restrict ", ast.Symbol("coarse", ()), qualifiers=["const"])] all_same = np.allclose(weights, weights[0, 0]) if all_same: w_sym = ast.Symbol("weights", ()) w = [ast.Decl("double", w_sym, weights[0, 0], qualifiers=["const"])] else: w_sym = ast.Symbol("weights", (nfdof, ncdof)) init = ast.ArrayInit(format_array_literal(weights)) w = [ast.Decl("double", w_sym, init, qualifiers=["const"])] i = ast.Symbol("i", ()) j = ast.Symbol("j", ()) k = ast.Symbol("k", ()) if all_same: assign = ast.Prod(ast.Symbol("coarse", (j, k)), w_sym) else: assign = ast.Prod(ast.Symbol("coarse", (j, k)), ast.Symbol("weights", (i, j))) assignment = ast.Incr(ast.Symbol("fine", (ast.Sum(k, ast.Prod(i, ast.c_sym(dim))),)), assign) k_loop = ast.For(ast.Decl("int", k, ast.c_sym(0)), ast.Less(k, ast.c_sym(dim)), ast.Incr(k, ast.c_sym(1)), ast.Block([assignment], open_scope=True)) j_loop = ast.For(ast.Decl("int", j, ast.c_sym(0)), ast.Less(j, ast.c_sym(ncdof)), ast.Incr(j, ast.c_sym(1)), ast.Block([k_loop], open_scope=True)) i_loop = ast.For(ast.Decl("int", i, ast.c_sym(0)), ast.Less(i, ast.c_sym(nfdof)), ast.Incr(i, ast.c_sym(1)), ast.Block([j_loop], open_scope=True)) k = ast.FunDecl("void", "prolongation", arglist, ast.Block(w + [i_loop]), pred=["static", "inline"]) return op2.Kernel(k, "prolongation", opts=parameters["coffee"])
def _generate_integral_ir(points, terms, sets, optimise_parameters, parameters): "Generate code to evaluate the element tensor." # For checking if the integral code is for a matrix def is_matrix(loop): loop_indices = [ l[0] for l in loop ] return (format["first free index"] in loop_indices and \ format["second free index"] in loop_indices) # Prefetch formats to speed up code generation. p_format = parameters["format"] f_comment = format["comment"] f_mul = format["mul"] f_scale_factor = format["scale factor"] f_iadd = format["iadd"] f_add = format["add"] f_A = format["element tensor"][p_format] f_j = format["first free index"] f_k = format["second free index"] f_loop = format["generate loop"] f_B = format["basis constant"] # Initialise return values. code = [] num_ops = 0 loops = {} # Extract sets. used_weights, used_psi_tables, used_nzcs, trans_set = sets nests = [] # Loop terms and create code. for loop, (data, entry_vals) in terms.items(): # If we don't have any entry values, there's no need to generate the loop. if not entry_vals: continue # Get data. t_set, u_weights, u_psi_tables, u_nzcs, basis_consts = data # If we have a value, then we also need to update the sets of used variables. trans_set.update(t_set) used_weights.update(u_weights) used_psi_tables.update(u_psi_tables) used_nzcs.update(u_nzcs) # @@@: A[0][0] += FE0[ip][j]*FE0[ip][k]*W24[ip]*det; entry_ir = [] for entry, value, ops in entry_vals: # Left hand side it_vars = entry if len(loop) > 0 else (0,) rank = tuple(i.loop_index if hasattr(i, 'loop_index') else i for i in it_vars) offset = tuple((1, int(i.offset)) if hasattr(i, 'offset') else (1, 0) for i in it_vars) local_tensor = pyop2.Symbol(f_A(''), rank, offset) # Right hand side pyop2_rhs = visit_rhs(value) entry_ir.append(pyop2.Incr(local_tensor, pyop2_rhs, "#pragma coffee expression")) # Disgusting hack, ensure resulting IR comes out in same order # on all processes. entry_ir = sorted(entry_ir, key=lambda x: x.gencode()) if len(loop) == 0: nest = pyop2.Block(entry_ir, open_scope=True) elif len(loop) in [1, 2]: it_var = c_sym(loop[0][0]) end = c_sym(loop[0][2]) nest = pyop2.For(pyop2.Decl("int", it_var, c_sym(0)), pyop2.Less(it_var, end), \ pyop2.Incr(it_var, c_sym(1)), pyop2.Block(entry_ir, open_scope=True), "#pragma coffee itspace") if len(loop) == 2: it_var = c_sym(loop[1][0]) end = c_sym(loop[1][2]) nest_k = pyop2.For(pyop2.Decl("int", it_var, c_sym(0)), pyop2.Less(it_var, end), \ pyop2.Incr(it_var, c_sym(1)), pyop2.Block(entry_ir, open_scope=True), "#pragma coffee itspace") nest.children[0] = pyop2.Block([nest_k], open_scope=True) nests.append(nest) return nests, num_ops
def _generate_functions(functions, sets): "Generate declarations for functions and code to compute values." f_comment = format["comment"] f_double = format["float declaration"] f_F = format["function value"] f_float = format["floating point"] f_decl = format["declaration"] f_r = format["free indices"] f_iadd = format["iadd"] f_loop = format["generate loop"] # Create the function declarations -- only the (unique) variables we need const_vardecls = set(fd.id for fd in functions.values() if fd.cellwise_constant) const_ast_items = [pyop2.Decl(f_double, c_sym(f_F(n)), c_sym(f_float(0))) for n in const_vardecls] vardecls = set(fd.id for fd in functions.values() if not fd.cellwise_constant) ast_items = [pyop2.Decl(f_double, c_sym(f_F(n)), c_sym(f_float(0))) for n in vardecls] # Get sets. used_psi_tables = sets[1] used_nzcs = sets[2] # Sort functions after being cellwise constant and loop ranges. function_groups = collections.defaultdict(list) for f, fd in functions.items(): function_groups[(fd.cellwise_constant, fd.loop_range)].append(f) total_ops = 0 # Loop ranges and get list of functions. for (cellwise_constant, loop_range), function_list in function_groups.iteritems(): function_expr = [] # Loop functions. func_ops = 0 for function in function_list: data = functions[function] range_i = data.loop_range if not isinstance(range_i, tuple): range_i = tuple([range_i]) # Add name to used psi names and non zeros name to used_nzcs. used_psi_tables.add(data.psi_name) used_nzcs.update(data.used_nzcs) # # TODO: This check can be removed for speed later. # REMOVED this, since we might need to increment into the same # number more than once for mixed element + interior facets # ffc_assert(data.id not in function_expr, "This is definitely not supposed to happen!") # Convert function to COFFEE ast node, save string # representation for sorting (such that we're reproducible # in parallel). function = visit_rhs(function) key = str(function) function_expr.append((data.id, function, key)) # Get number of operations to compute entry and add to function operations count. func_ops += (data.ops + 1)*sum(range_i) # Gather, sorted by string rep of function. lines = [pyop2.Incr(c_sym(f_F(n)), fn) for n, fn, _ in sorted(function_expr, key=lambda x: x[2])] if isinstance(loop_range, tuple): if not all(map(lambda x: x==loop_range[0], loop_range)): raise RuntimeError("General mixed elements not yet supported in PyOP2") loop_vars = [ (f_r[0], 0, loop_range[0]), (f_r[1], 0, len(loop_range)) ] else: loop_vars = [(f_r[0], 0, loop_range)] # TODO: If loop_range == 1, this loop may be unneccessary. Not sure if it's safe to just skip it. it_var = c_sym(loop_vars[0][0]) loop_size = c_sym(loop_vars[0][2]) ast_item = pyop2.For(pyop2.Decl("int", it_var, c_sym(0)), pyop2.Less(it_var, loop_size), pyop2.Incr(it_var, c_sym(1)), pyop2.Block(lines, open_scope=True)) if cellwise_constant: const_ast_items.append(ast_item) else: ast_items.append(ast_item) return const_ast_items, ast_items, total_ops
def _generate_element_tensor(integrals, sets, optimise_parameters, parameters): "Construct quadrature code for element tensors." # Prefetch formats to speed up code generation. f_comment = format["comment"] f_ip = format["integration points"] f_I = format["ip constant"] f_loop = format["generate loop"] f_ip_coords = format["generate ip coordinates"] f_coords = format["coordinate_dofs"] f_double = format["float declaration"] f_decl = format["declaration"] f_X = format["ip coordinates"] f_C = format["conditional"] # Initialise return values. tensor_ops_count = 0 ffc_assert(1 == len(integrals), "This function is not capable of handling multiple integrals.") # We receive a dictionary {num_points: form,}. # Loop points and forms. for points, terms, functions, ip_consts, coordinate, conditionals in integrals: nest_ir = [] ip_ir = [] num_ops = 0 # Generate code to compute coordinates if used. if coordinate: raise RuntimeError("Don't know how to compute coordinates") # Left in place for posterity name, gdim, ip, r = coordinate element_code += ["", f_comment("Declare array to hold physical coordinate of quadrature point.")] element_code += [f_decl(f_double, f_X(points, gdim))] ops, coord_code = f_ip_coords(gdim, points, name, ip, r) ip_code += ["", f_comment("Compute physical coordinate of quadrature point, operations: %d." % ops)] ip_code += [coord_code] num_ops += ops # Update used psi tables and transformation set. sets[1].add(name) sets[3].add(f_coords(r)) # Generate code to compute function values. if functions: const_func_code, func_code, ops = _generate_functions(functions, sets) nest_ir += const_func_code ip_ir += func_code num_ops += ops # Generate code to compute conditionals (might depend on coordinates # and function values so put here). # TODO: Some conditionals might only depend on geometry so they # should be moved outside if possible. if conditionals: ip_ir.append(pyop2.Decl(f_double, c_sym(f_C(len(conditionals))))) # Sort conditionals (need to in case of nested conditionals). reversed_conds = dict([(n, (o, e)) for e, (t, o, n) in conditionals.items()]) for num in range(len(conditionals)): name = format["conditional"](num) ops, expr = reversed_conds[num] ip_ir.append(pyop2.Assign(c_sym(name), visit_rhs(expr))) num_ops += ops # Generate code for ip constant declarations. # TODO: this code should be removable as only executed when ffc's optimisations are on ip_const_ops, ip_const_code = generate_aux_constants(ip_consts, f_I,\ format["assign"], True) if len(ip_const_code) > 0: raise RuntimeError("IP Const code not supported") num_ops += ip_const_ops # Generate code to evaluate the element tensor. code, ops = _generate_integral_ir(points, terms, sets, optimise_parameters, parameters) num_ops += ops tensor_ops_count += num_ops*points ip_ir += code # Loop code over all IPs. # @@@: for (ip ...) { A[0][0] += ... } if points > 1: it_var = pyop2.Symbol(f_ip, ()) nest_ir += [pyop2.For(pyop2.Decl("int", it_var, c_sym(0)), pyop2.Less(it_var, c_sym(points)), pyop2.Incr(it_var, c_sym(1)), pyop2.Block(ip_ir, open_scope=True))] else: nest_ir += ip_ir return (nest_ir, tensor_ops_count)