def test_EstimateDistances_modify_lf(self): """tests modifying the lf""" def constrain_fit(lf): lf.set_param_rule("kappa", is_constant=True) lf.optimise(local=True) return lf d = EstimateDistances(self.al, HKY85(), modify_lf=constrain_fit) d.run(show_progress=False) result = d.get_pairwise_distances().to_dict() d = EstimateDistances(self.al, F81()) d.run(show_progress=False) expect = d.get_pairwise_distances().to_dict() self.assertDistsAlmostEqual(expect, result)
def test_get_param_matrix_coords(self): """return correct coords for continuous-time models""" f81 = F81() self.assertEqual(f81.get_param_matrix_coords(), {}) self.assertTrue( len(f81.get_param_matrix_coords(include_ref_cell=True)["ref_cell"]) == 12 ) hky85 = HKY85() coords = hky85.get_param_matrix_coords() self.assertEqual(set(coords), set(["kappa"])) coords = hky85.get_param_matrix_coords(include_ref_cell=True) self.assertEqual(set(coords), set(["kappa", "ref_cell"])) gn = GN() coords = gn.get_param_matrix_coords(include_ref_cell=True) self.assertTrue(len(coords) == 12) self.assertTrue(len(coords["ref_cell"]) == 1)
def test_to_rich_dict(self): """returns complete dict of attributes""" f81 = F81().to_rich_dict() hky85 = HKY85().to_rich_dict() gn = GN().to_rich_dict()