Example #1
0
with sess.as_default():
    # Initialize
    sess.run(tf.global_variables_initializer())
    sess.run(tf.local_variables_initializer())

    # Coordinate the loading of image files.
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(coord=coord)

    # Restore
    if latest_checkpoint is not None:
        print('Restoring from: {}'.format(latest_checkpoint))
        saver.restore(sess, latest_checkpoint)
        print(' done!')
    else:
        print('No checkpoint found in:', checkpoint_paths)

    # Evaluation (epoch=-1 to say that this is an evaluation after training)
    for batch in range(batches):
        print('Batch: {}/{}'.format(batch, batches), run_id)
        res = sess.run(evaluations_ops)
        plot_evaluation(res, run_id, epoch="-1_{}".format(batch))
        print('Batch Cost: {}'.format(res['cost']))
        costs.append(res['cost'])

    print('Average cost: {}'.format(sum(costs) / len(costs)))

    # Finish off the filename queue coordinator.
    coord.request_stop()
    coord.join(threads)
Example #2
0
            global_step = res['global_step']
            print_term(
                'Cost: {} Global step: {}'.format(res['cost'], global_step),
                run_id, res['cost'])
            print_term(
                'Cost_LowRes: {} Global step: {}'.format(
                    res['cost_fwd'], global_step), run_id, res['cost_fwd'])
            print_term(
                'Cost_Ref: {} Global step: {}'.format(res['cost_ref'],
                                                      global_step), run_id,
                res['cost_ref'])
            train_col_writer.add_summary(res['summary'], global_step)
            train_fwd_writer.add_summary(res['summary_fwd'], global_step)
            train_ref_writer.add_summary(res['summary_ref'], global_step)

        # Save the variables to disk
        save_path = saver.save(sess, checkpoint_paths, global_step)
        print_term("Model saved in: %s" % save_path, run_id)

        # Evaluation step on validation
        res = sess.run(evaluations_ops)
        val_col_writer.add_summary(res['summary'], global_step)
        val_fwd_writer.add_summary(res['summary_fwd'], global_step)
        val_ref_writer.add_summary(res['summary_ref'], global_step)
        plot_evaluation(res, run_id, epoch)

    # Finish off the filename queue coordinator.
    coord.request_stop()
    coord.join(threads)
print('Done training...')
Example #3
0
ref = Refinement()
evaluations_ops = evaluation_pipeline(col, fwd_col, ref, val_number_of_images)
summary_writer = metrics_system(run_id, sess)
saver, checkpoint_paths, latest_checkpoint = checkpointing_system(run_id)

with sess.as_default():
    # Initialize
    sess.run(tf.global_variables_initializer())
    sess.run(tf.local_variables_initializer())

    # Coordinate the loading of image files.
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(coord=coord)

    # Restore
    if latest_checkpoint is not None:
        print('Restoring from: {}'.format(latest_checkpoint))
        saver.restore(sess, latest_checkpoint)
        print(' done!')
    else:
        print('No checkpoint found in:', checkpoint_paths)

    # Evaluation (epoch=-1 to say that this is an evaluation after training)
    res = sess.run(evaluations_ops)
    print('Cost: {}'.format(res['cost']))
    plot_evaluation(res, run_id, epoch=-1, is_eval=True)

    # Finish off the filename queue coordinator.
    coord.request_stop()
    coord.join(threads)