with sess.as_default(): # Initialize sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) # Coordinate the loading of image files. coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) # Restore if latest_checkpoint is not None: print('Restoring from: {}'.format(latest_checkpoint)) saver.restore(sess, latest_checkpoint) print(' done!') else: print('No checkpoint found in:', checkpoint_paths) # Evaluation (epoch=-1 to say that this is an evaluation after training) for batch in range(batches): print('Batch: {}/{}'.format(batch, batches), run_id) res = sess.run(evaluations_ops) plot_evaluation(res, run_id, epoch="-1_{}".format(batch)) print('Batch Cost: {}'.format(res['cost'])) costs.append(res['cost']) print('Average cost: {}'.format(sum(costs) / len(costs))) # Finish off the filename queue coordinator. coord.request_stop() coord.join(threads)
global_step = res['global_step'] print_term( 'Cost: {} Global step: {}'.format(res['cost'], global_step), run_id, res['cost']) print_term( 'Cost_LowRes: {} Global step: {}'.format( res['cost_fwd'], global_step), run_id, res['cost_fwd']) print_term( 'Cost_Ref: {} Global step: {}'.format(res['cost_ref'], global_step), run_id, res['cost_ref']) train_col_writer.add_summary(res['summary'], global_step) train_fwd_writer.add_summary(res['summary_fwd'], global_step) train_ref_writer.add_summary(res['summary_ref'], global_step) # Save the variables to disk save_path = saver.save(sess, checkpoint_paths, global_step) print_term("Model saved in: %s" % save_path, run_id) # Evaluation step on validation res = sess.run(evaluations_ops) val_col_writer.add_summary(res['summary'], global_step) val_fwd_writer.add_summary(res['summary_fwd'], global_step) val_ref_writer.add_summary(res['summary_ref'], global_step) plot_evaluation(res, run_id, epoch) # Finish off the filename queue coordinator. coord.request_stop() coord.join(threads) print('Done training...')
ref = Refinement() evaluations_ops = evaluation_pipeline(col, fwd_col, ref, val_number_of_images) summary_writer = metrics_system(run_id, sess) saver, checkpoint_paths, latest_checkpoint = checkpointing_system(run_id) with sess.as_default(): # Initialize sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) # Coordinate the loading of image files. coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) # Restore if latest_checkpoint is not None: print('Restoring from: {}'.format(latest_checkpoint)) saver.restore(sess, latest_checkpoint) print(' done!') else: print('No checkpoint found in:', checkpoint_paths) # Evaluation (epoch=-1 to say that this is an evaluation after training) res = sess.run(evaluations_ops) print('Cost: {}'.format(res['cost'])) plot_evaluation(res, run_id, epoch=-1, is_eval=True) # Finish off the filename queue coordinator. coord.request_stop() coord.join(threads)