Example #1
0
File: cam16.py Project: yixw/colour
def XYZ_to_CAM16(XYZ,
                 XYZ_w,
                 L_A,
                 Y_b,
                 surround=CAM16_VIEWING_CONDITIONS['Average'],
                 discount_illuminant=False):
    """
    Computes the *CAM16* colour appearance model correlates from given
    *CIE XYZ* tristimulus values.

    This is the *forward* implementation.

    Parameters
    ----------
    XYZ : array_like
        *CIE XYZ* tristimulus values of test sample / stimulus.
    XYZ_w : array_like
        *CIE XYZ* tristimulus values of reference white.
    L_A : numeric or array_like
        Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`, (often taken
        to be 20% of the luminance of a white object in the scene).
    Y_b : numeric or array_like
        Relative luminance of background :math:`Y_b` in :math:`cd/m^2`.
    surround : CAM16_InductionFactors, optional
        Surround viewing conditions induction factors.
    discount_illuminant : bool, optional
        Truth value indicating if the illuminant should be discounted.

    Returns
    -------
    CAM16_Specification
        *CAM16* colour appearance model specification.

    Notes
    -----

    +---------------------------+-----------------------+---------------+
    | **Domain**                | **Scale - Reference** | **Scale - 1** |
    +===========================+=======================+===============+
    | ``XYZ``                   | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``XYZ_w``                 | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+

    +---------------------------+-----------------------+---------------+
    | **Range**                 | **Scale - Reference** | **Scale - 1** |
    +===========================+=======================+===============+
    | ``CAM16_specification.J`` | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.C`` | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.h`` | [0, 360]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.s`` | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.Q`` | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.M`` | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.H`` | [0, 360]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+

    References
    ----------
    :cite:`Li2017`

    Examples
    --------
    >>> XYZ = np.array([19.01, 20.00, 21.78])
    >>> XYZ_w = np.array([95.05, 100.00, 108.88])
    >>> L_A = 318.31
    >>> Y_b = 20.0
    >>> surround = CAM16_VIEWING_CONDITIONS['Average']
    >>> XYZ_to_CAM16(XYZ, XYZ_w, L_A, Y_b, surround)  # doctest: +ELLIPSIS
    CAM16_Specification(J=41.7312079..., C=0.1033557..., h=217.0679597..., \
s=2.3450150..., Q=195.3717089..., M=0.1074367..., H=275.5949861..., HC=None)
    """

    XYZ = to_domain_100(XYZ)
    XYZ_w = to_domain_100(XYZ_w)
    _X_w, Y_w, _Z_w = tsplit(XYZ_w)
    L_A = as_float_array(L_A)
    Y_b = as_float_array(Y_b)

    # Step 0
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB_w = dot_vector(M_16, XYZ_w)

    # Computing degree of adaptation :math:`D`.
    D = (np.clip(degree_of_adaptation(surround.F, L_A), 0, 1)
         if not discount_illuminant else np.ones(L_A.shape))

    n, F_L, N_bb, N_cb, z = tsplit(
        viewing_condition_dependent_parameters(Y_b, Y_w, L_A))

    D_RGB = (D[..., np.newaxis] * Y_w[..., np.newaxis] / RGB_w + 1 -
             D[..., np.newaxis])
    RGB_wc = D_RGB * RGB_w

    # Applying forward post-adaptation non linear response compression.
    RGB_aw = post_adaptation_non_linear_response_compression_forward(
        RGB_wc, F_L)

    # Computing achromatic responses for the whitepoint.
    A_w = achromatic_response_forward(RGB_aw, N_bb)

    # Step 1
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB = dot_vector(M_16, XYZ)

    # Step 2
    RGB_c = D_RGB * RGB

    # Step 3
    # Applying forward post-adaptation non linear response compression.
    RGB_a = post_adaptation_non_linear_response_compression_forward(RGB_c, F_L)

    # Step 4
    # Converting to preliminary cartesian coordinates.
    a, b = tsplit(opponent_colour_dimensions_forward(RGB_a))

    # Computing the *hue* angle :math:`h`.
    h = hue_angle(a, b)

    # Step 5
    # Computing eccentricity factor *e_t*.
    e_t = eccentricity_factor(h)

    # Computing hue :math:`h` quadrature :math:`H`.
    H = hue_quadrature(h)
    # TODO: Compute hue composition.

    # Step 6
    # Computing achromatic responses for the stimulus.
    A = achromatic_response_forward(RGB_a, N_bb)

    # Step 7
    # Computing the correlate of *Lightness* :math:`J`.
    J = lightness_correlate(A, A_w, surround.c, z)

    # Step 8
    # Computing the correlate of *brightness* :math:`Q`.
    Q = brightness_correlate(surround.c, J, A_w, F_L)

    # Step 9
    # Computing the correlate of *chroma* :math:`C`.
    C = chroma_correlate(J, n, surround.N_c, N_cb, e_t, a, b, RGB_a)

    # Computing the correlate of *colourfulness* :math:`M`.
    M = colourfulness_correlate(C, F_L)

    # Computing the correlate of *saturation* :math:`s`.
    s = saturation_correlate(M, Q)

    return CAM16_Specification(from_range_100(J), from_range_100(C),
                               from_range_degrees(h), from_range_100(s),
                               from_range_100(Q), from_range_100(M),
                               from_range_degrees(H), None)
Example #2
0
def XYZ_to_CAM16(
    XYZ: ArrayLike,
    XYZ_w: ArrayLike,
    L_A: FloatingOrArrayLike,
    Y_b: FloatingOrArrayLike,
    surround: Union[
        InductionFactors_CIECAM02,
        InductionFactors_CAM16] = VIEWING_CONDITIONS_CAM16["Average"],
    discount_illuminant: Boolean = False,
) -> CAM_Specification_CAM16:
    """
    Compute the *CAM16* colour appearance model correlates from given
    *CIE XYZ* tristimulus values.

    Parameters
    ----------
    XYZ
        *CIE XYZ* tristimulus values of test sample / stimulus.
    XYZ_w
        *CIE XYZ* tristimulus values of reference white.
    L_A
        Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`, (often taken
        to be 20% of the luminance of a white object in the scene).
    Y_b
        Luminous factor of background :math:`Y_b` such as
        :math:`Y_b = 100 x L_b / L_w` where :math:`L_w` is the luminance of the
        light source and :math:`L_b` is the luminance of the background. For
        viewing images, :math:`Y_b` can be the average :math:`Y` value for the
        pixels in the entire image, or frequently, a :math:`Y` value of 20,
        approximate an :math:`L^*` of 50 is used.
    surround
        Surround viewing conditions induction factors.
    discount_illuminant
        Truth value indicating if the illuminant should be discounted.

    Returns
    -------
    :class:`colour.CAM_Specification_CAM16`
        *CAM16* colour appearance model specification.

    Notes
    -----
    +------------+-----------------------+---------------+
    | **Domain** | **Scale - Reference** | **Scale - 1** |
    +============+=======================+===============+
    | ``XYZ``    | [0, 100]              | [0, 1]        |
    +------------+-----------------------+---------------+
    | ``XYZ_w``  | [0, 100]              | [0, 1]        |
    +------------+-----------------------+---------------+

    +-------------------------------+-----------------------+---------------+
    | **Range**                     | **Scale - Reference** | **Scale - 1** |
    +===============================+=======================+===============+
    | ``CAM_Specification_CAM16.J`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.C`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.h`` | [0, 360]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.s`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.Q`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.M`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.H`` | [0, 400]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+

    References
    ----------
    :cite:`Li2017`

    Examples
    --------
    >>> XYZ = np.array([19.01, 20.00, 21.78])
    >>> XYZ_w = np.array([95.05, 100.00, 108.88])
    >>> L_A = 318.31
    >>> Y_b = 20.0
    >>> surround = VIEWING_CONDITIONS_CAM16['Average']
    >>> XYZ_to_CAM16(XYZ, XYZ_w, L_A, Y_b, surround)  # doctest: +ELLIPSIS
    CAM_Specification_CAM16(J=41.7312079..., C=0.1033557..., \
h=217.0679597..., s=2.3450150..., Q=195.3717089..., M=0.1074367..., \
H=275.5949861..., HC=None)
    """

    XYZ = to_domain_100(XYZ)
    XYZ_w = to_domain_100(XYZ_w)
    _X_w, Y_w, _Z_w = tsplit(XYZ_w)
    L_A = as_float_array(L_A)
    Y_b = as_float_array(Y_b)

    # Step 0
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB_w = vector_dot(MATRIX_16, XYZ_w)

    # Computing degree of adaptation :math:`D`.
    D = (np.clip(degree_of_adaptation(surround.F, L_A), 0, 1)
         if not discount_illuminant else ones(L_A.shape))

    n, F_L, N_bb, N_cb, z = viewing_condition_dependent_parameters(
        Y_b, Y_w, L_A)

    D_RGB = (D[..., np.newaxis] * Y_w[..., np.newaxis] / RGB_w + 1 -
             D[..., np.newaxis])
    RGB_wc = D_RGB * RGB_w

    # Applying forward post-adaptation non-linear response compression.
    RGB_aw = post_adaptation_non_linear_response_compression_forward(
        RGB_wc, F_L)

    # Computing achromatic responses for the whitepoint.
    A_w = achromatic_response_forward(RGB_aw, N_bb)

    # Step 1
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB = vector_dot(MATRIX_16, XYZ)

    # Step 2
    RGB_c = D_RGB * RGB

    # Step 3
    # Applying forward post-adaptation non-linear response compression.
    RGB_a = post_adaptation_non_linear_response_compression_forward(RGB_c, F_L)

    # Step 4
    # Converting to preliminary cartesian coordinates.
    a, b = tsplit(opponent_colour_dimensions_forward(RGB_a))

    # Computing the *hue* angle :math:`h`.
    h = hue_angle(a, b)

    # Step 5
    # Computing eccentricity factor *e_t*.
    e_t = eccentricity_factor(h)

    # Computing hue :math:`h` quadrature :math:`H`.
    H = hue_quadrature(h)
    # TODO: Compute hue composition.

    # Step 6
    # Computing achromatic responses for the stimulus.
    A = achromatic_response_forward(RGB_a, N_bb)

    # Step 7
    # Computing the correlate of *Lightness* :math:`J`.
    J = lightness_correlate(A, A_w, surround.c, z)

    # Step 8
    # Computing the correlate of *brightness* :math:`Q`.
    Q = brightness_correlate(surround.c, J, A_w, F_L)

    # Step 9
    # Computing the correlate of *chroma* :math:`C`.
    C = chroma_correlate(J, n, surround.N_c, N_cb, e_t, a, b, RGB_a)

    # Computing the correlate of *colourfulness* :math:`M`.
    M = colourfulness_correlate(C, F_L)

    # Computing the correlate of *saturation* :math:`s`.
    s = saturation_correlate(M, Q)

    return CAM_Specification_CAM16(
        as_float(from_range_100(J)),
        as_float(from_range_100(C)),
        as_float(from_range_degrees(h)),
        as_float(from_range_100(s)),
        as_float(from_range_100(Q)),
        as_float(from_range_100(M)),
        as_float(from_range_degrees(H, 400)),
        None,
    )
Example #3
0
def XYZ_to_CAM16(XYZ,
                 XYZ_w,
                 L_A,
                 Y_b,
                 surround=CAM16_VIEWING_CONDITIONS['Average'],
                 discount_illuminant=False):
    """
    Computes the *CAM16* colour appearance model correlates from given
    *CIE XYZ* tristimulus values.

    This is the *forward* implementation.

    Parameters
    ----------
    XYZ : array_like
        *CIE XYZ* tristimulus values of test sample / stimulus.
    XYZ_w : array_like
        *CIE XYZ* tristimulus values of reference white.
    L_A : numeric or array_like
        Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`, (often taken
        to be 20% of the luminance of a white object in the scene).
    Y_b : numeric or array_like
        Relative luminance of background :math:`Y_b` in :math:`cd/m^2`.
    surround : CAM16_InductionFactors, optional
        Surround viewing conditions induction factors.
    discount_illuminant : bool, optional
        Truth value indicating if the illuminant should be discounted.

    Returns
    -------
    CAM16_Specification
        *CAM16* colour appearance model specification.

    Notes
    -----

    +---------------------------+-----------------------+---------------+
    | **Domain**                | **Scale - Reference** | **Scale - 1** |
    +===========================+=======================+===============+
    | ``XYZ``                   | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``XYZ_w``                 | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+

    +---------------------------+-----------------------+---------------+
    | **Range**                 | **Scale - Reference** | **Scale - 1** |
    +===========================+=======================+===============+
    | ``CAM16_Specification.h`` | [0, 360]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_Specification.H`` | [0, 360]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+

    References
    ----------
    :cite:`Li2017`

    Examples
    --------
    >>> XYZ = np.array([19.01, 20.00, 21.78])
    >>> XYZ_w = np.array([95.05, 100.00, 108.88])
    >>> L_A = 318.31
    >>> Y_b = 20.0
    >>> surround = CAM16_VIEWING_CONDITIONS['Average']
    >>> XYZ_to_CAM16(XYZ, XYZ_w, L_A, Y_b, surround)  # doctest: +ELLIPSIS
    CAM16_Specification(J=41.7312079..., C=0.1033557..., h=217.0679597..., \
s=2.3450150..., Q=195.3717089..., M=0.1074367..., H=275.5949861..., HC=None)
    """

    XYZ = to_domain_100(XYZ)
    XYZ_w = to_domain_100(XYZ_w)
    _X_w, Y_w, _Z_w = tsplit(XYZ_w)
    L_A = as_float_array(L_A)
    Y_b = as_float_array(Y_b)

    # Step 0
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB_w = dot_vector(M_16, XYZ_w)

    # Computing degree of adaptation :math:`D`.
    D = (np.clip(degree_of_adaptation(surround.F, L_A), 0, 1)
         if not discount_illuminant else np.ones(L_A.shape))

    n, F_L, N_bb, N_cb, z = tsplit(
        viewing_condition_dependent_parameters(Y_b, Y_w, L_A))

    D_RGB = (D[..., np.newaxis] * Y_w[..., np.newaxis] / RGB_w + 1 -
             D[..., np.newaxis])
    RGB_wc = D_RGB * RGB_w

    # Applying forward post-adaptation non linear response compression.
    RGB_aw = post_adaptation_non_linear_response_compression_forward(
        RGB_wc, F_L)

    # Computing achromatic responses for the whitepoint.
    A_w = achromatic_response_forward(RGB_aw, N_bb)

    # Step 1
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB = dot_vector(M_16, XYZ)

    # Step 2
    RGB_c = D_RGB * RGB

    # Step 3
    # Applying forward post-adaptation non linear response compression.
    RGB_a = post_adaptation_non_linear_response_compression_forward(RGB_c, F_L)

    # Step 4
    # Converting to preliminary cartesian coordinates.
    a, b = tsplit(opponent_colour_dimensions_forward(RGB_a))

    # Computing the *hue* angle :math:`h`.
    h = hue_angle(a, b)

    # Step 5
    # Computing eccentricity factor *e_t*.
    e_t = eccentricity_factor(h)

    # Computing hue :math:`h` quadrature :math:`H`.
    H = hue_quadrature(h)
    # TODO: Compute hue composition.

    # Step 6
    # Computing achromatic responses for the stimulus.
    A = achromatic_response_forward(RGB_a, N_bb)

    # Step 7
    # Computing the correlate of *Lightness* :math:`J`.
    J = lightness_correlate(A, A_w, surround.c, z)

    # Step 8
    # Computing the correlate of *brightness* :math:`Q`.
    Q = brightness_correlate(surround.c, J, A_w, F_L)

    # Step 9
    # Computing the correlate of *chroma* :math:`C`.
    C = chroma_correlate(J, n, surround.N_c, N_cb, e_t, a, b, RGB_a)

    # Computing the correlate of *colourfulness* :math:`M`.
    M = colourfulness_correlate(C, F_L)

    # Computing the correlate of *saturation* :math:`s`.
    s = saturation_correlate(M, Q)

    return CAM16_Specification(J, C, from_range_degrees(h), s, Q, M,
                               from_range_degrees(H), None)
Example #4
0
def XYZ_to_CAM16(XYZ,
                 XYZ_w,
                 L_A,
                 Y_b,
                 surround=CAM16_VIEWING_CONDITIONS['Average'],
                 discount_illuminant=False):
    """
    Computes the *CAM16* colour appearance model correlates from given
    *CIE XYZ* tristimulus values.

    This is the *forward* implementation.

    Parameters
    ----------
    XYZ : array_like
        *CIE XYZ* tristimulus values of test sample / stimulus in domain
        [0, 100].
    XYZ_w : array_like
        *CIE XYZ* tristimulus values of reference white in domain [0, 100].
    L_A : numeric or array_like
        Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`, (often taken
        to be 20% of the luminance of a white object in the scene).
    Y_b : numeric or array_like
        Relative luminance of background :math:`Y_b` in :math:`cd/m^2`.
    surround : CAM16_InductionFactors, optional
        Surround viewing conditions induction factors.
    discount_illuminant : bool, optional
        Truth value indicating if the illuminant should be discounted.

    Returns
    -------
    CAM16_Specification
        *CAM16* colour appearance model specification.

    Warning
    -------
    The input domain of that definition is non standard!

    Notes
    -----
    -   Input *CIE XYZ* tristimulus values are in domain [0, 100].
    -   Input *CIE XYZ_w* tristimulus values are in domain [0, 100].

    References
    ----------
    -   :cite:`Li2017`

    Examples
    --------
    >>> XYZ = np.array([19.01, 20.00, 21.78])
    >>> XYZ_w = np.array([95.05, 100.00, 108.88])
    >>> L_A = 318.31
    >>> Y_b = 20.0
    >>> surround = CAM16_VIEWING_CONDITIONS['Average']
    >>> XYZ_to_CAM16(XYZ, XYZ_w, L_A, Y_b, surround)  # doctest: +ELLIPSIS
    CAM16_Specification(J=41.7180250..., C=11.9413446..., h=210.3838955..., \
s=25.3564036..., Q=193.0617673..., M=12.4128523..., H=267.0983345..., HC=None)
    """

    _X_w, Y_w, _Z_w = tsplit(XYZ_w)
    L_A = np.asarray(L_A)
    Y_b = np.asarray(Y_b)

    # Step 0
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB_w = dot_vector(M_16, XYZ_w)

    # Computing degree of adaptation :math:`D`.
    D = (np.clip(degree_of_adaptation(surround.F, L_A), 0, 1)
         if not discount_illuminant else 1)

    n, F_L, N_bb, N_cb, z = tsplit(
        viewing_condition_dependent_parameters(Y_b, Y_w, L_A))

    D_RGB = D[..., np.newaxis] * XYZ_w / RGB_w + 1 - D[..., np.newaxis]
    RGB_wc = D_RGB * RGB_w

    # Applying forward post-adaptation non linear response compression.
    RGB_aw = post_adaptation_non_linear_response_compression_forward(
        RGB_wc, F_L)

    # Computing achromatic responses for the whitepoint.
    A_w = achromatic_response_forward(RGB_aw, N_bb)

    # Step 1
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB = dot_vector(M_16, XYZ)

    # Step 2
    RGB_c = D_RGB * RGB

    # Step 3
    # Applying forward post-adaptation non linear response compression.
    RGB_a = post_adaptation_non_linear_response_compression_forward(RGB_c, F_L)

    # Step 4
    # Converting to preliminary cartesian coordinates.
    a, b = tsplit(opponent_colour_dimensions_forward(RGB_a))

    # Computing the *hue* angle :math:`h`.
    h = hue_angle(a, b)

    # Step 5
    # Computing eccentricity factor *e_t*.
    e_t = eccentricity_factor(h)

    # Computing hue :math:`h` quadrature :math:`H`.
    H = hue_quadrature(h)
    # TODO: Compute hue composition.

    # Step 6
    # Computing achromatic responses for the stimulus.
    A = achromatic_response_forward(RGB_a, N_bb)

    # Step 7
    # Computing the correlate of *Lightness* :math:`J`.
    J = lightness_correlate(A, A_w, surround.c, z)

    # Step 8
    # Computing the correlate of *brightness* :math:`Q`.
    Q = brightness_correlate(surround.c, J, A_w, F_L)

    # Step 9
    # Computing the correlate of *chroma* :math:`C`.
    C = chroma_correlate(J, n, surround.N_c, N_cb, e_t, a, b, RGB_a)

    # Computing the correlate of *colourfulness* :math:`M`.
    M = colourfulness_correlate(C, F_L)

    # Computing the correlate of *saturation* :math:`s`.
    s = saturation_correlate(M, Q)

    return CAM16_Specification(J, C, h, s, Q, M, H, None)