def test_n_dimensional_excitation_purity(self): """ Tests :func:`colour.colorimetry.dominant.excitation_purity` definition n-dimensional arrays support. """ xy = np.array([0.26415, 0.37770]) xy_n = D65 P_e = 0.157118186993525 np.testing.assert_almost_equal( excitation_purity(xy, xy_n, CIE_2_1931_CMFS), P_e, decimal=7) xy = np.tile(xy, (6, 1)) xy_n = np.tile(xy_n, (6, 1)) P_e = np.tile(P_e, 6) np.testing.assert_almost_equal( excitation_purity(xy, xy_n, CIE_2_1931_CMFS), P_e, decimal=7) xy = np.reshape(xy, (2, 3, 2)) xy_n = np.reshape(xy_n, (2, 3, 2)) P_e = np.reshape(P_e, (2, 3)) np.testing.assert_almost_equal( excitation_purity(xy, xy_n, CIE_2_1931_CMFS), P_e, decimal=7)
def test_nan_excitation_purity(self): """ Tests :func:`colour.colorimetry.dominant.excitation_purity` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=2)) for case in cases: try: excitation_purity(case, case, CIE_2_1931_CMFS) except ValueError: pass
def test_excitation_purity(self): """ Tests :func:`colour.colorimetry.dominant.excitation_purity` definition. """ xy = np.array([0.54369557, 0.32107944]) xy_n = D65 self.assertAlmostEqual(excitation_purity(xy, xy_n, CIE_2_1931_CMFS), 0.622885671878446, places=7) xy = np.array([0.37605506, 0.24452225]) self.assertAlmostEqual(excitation_purity(xy, xy_n, CIE_2_1931_CMFS), 0.438347859215887, places=7)
def test_excitation_purity(self): """ Tests :func:`colour.colorimetry.dominant.excitation_purity` definition. """ xy = np.array([0.26415, 0.37770]) xy_n = D65 self.assertAlmostEqual(excitation_purity(xy, xy_n, CIE_2_1931_CMFS), 0.157118186993525, places=7) xy = np.array([0.35000, 0.25000]) self.assertAlmostEqual(excitation_purity(xy, xy_n, CIE_2_1931_CMFS), 0.370659424135609, places=7)
def test_excitation_purity(self): """ Tests :func:`colour.colorimetry.dominant.excitation_purity` definition. """ xy = np.array([0.54369557, 0.32107944]) xy_n = D65 self.assertAlmostEqual( excitation_purity(xy, xy_n, CIE_2_1931_CMFS), 0.622885671878446, places=7) xy = np.array([0.37605506, 0.24452225]) self.assertAlmostEqual( excitation_purity(xy, xy_n, CIE_2_1931_CMFS), 0.438347859215887, places=7)
def test_excitation_purity(self): """ Tests :func:`colour.colorimetry.dominant.excitation_purity` definition. """ xy = np.array([0.26415, 0.37770]) xy_n = D65 self.assertAlmostEqual( excitation_purity(xy, xy_n, CIE_2_1931_CMFS), 0.157118186993525, places=7) xy = np.array([0.35000, 0.25000]) self.assertAlmostEqual( excitation_purity(xy, xy_n, CIE_2_1931_CMFS), 0.370659424135609, places=7)
def test_n_dimensional_excitation_purity(self): """ Tests :func:`colour.colorimetry.dominant.excitation_purity` definition n-dimensional arrays support. """ xy = np.array([0.54369557, 0.32107944]) xy_n = D65 P_e = excitation_purity(xy, xy_n, CIE_2_1931_CMFS) xy = np.tile(xy, (6, 1)) xy_n = np.tile(xy_n, (6, 1)) P_e = np.tile(P_e, 6) np.testing.assert_almost_equal( excitation_purity(xy, xy_n, CIE_2_1931_CMFS), P_e, decimal=7) xy = np.reshape(xy, (2, 3, 2)) xy_n = np.reshape(xy_n, (2, 3, 2)) P_e = np.reshape(P_e, (2, 3)) np.testing.assert_almost_equal( excitation_purity(xy, xy_n, CIE_2_1931_CMFS), P_e, decimal=7)