Example #1
0
def build(config, batch_size, is_train=False):
    optimizer = train_utils.build_optimizer(config)
    ema_vars = []

    downsample = config.get('downsample', False)
    downsample_res = config.get('downsample_res', 64)
    h, w = config.resolution

    if config.model.name == 'coltran_core':
        if downsample:
            h, w = downsample_res, downsample_res
        zero = tf.zeros((batch_size, h, w, 3), dtype=tf.int32)
        model = colorizer.ColTranCore(config.model)
        model(zero, training=is_train)

    c = 1 if is_train else 3
    if config.model.name == 'color_upsampler':
        if downsample:
            h, w = downsample_res, downsample_res
        zero_slice = tf.zeros((batch_size, h, w, c), dtype=tf.int32)
        zero = tf.zeros((batch_size, h, w, 3), dtype=tf.int32)
        model = upsampler.ColorUpsampler(config.model)
        model(zero, inputs_slice=zero_slice, training=is_train)
    elif config.model.name == 'spatial_upsampler':
        zero_slice = tf.zeros((batch_size, h, w, c), dtype=tf.int32)
        zero = tf.zeros((batch_size, h, w, 3), dtype=tf.int32)
        model = upsampler.SpatialUpsampler(config.model)
        model(zero, inputs_slice=zero_slice, training=is_train)

    ema_vars = model.trainable_variables
    ema = train_utils.build_ema(config, ema_vars)
    return model, optimizer, ema
    def test_bit_upsampler_attention_num_channels_1(self):
        config = self.get_config()
        bit_upsampler = upsampler.ColorUpsampler(config=config)

        inputs = tf.random.uniform(shape=(8, 32, 32, 3),
                                   minval=0,
                                   maxval=256,
                                   dtype=tf.int32)
        inputs_slice = tf.random.uniform(shape=(8, 32, 32, 1),
                                         minval=0,
                                         maxval=256,
                                         dtype=tf.int32)
        grayscale = tf.image.rgb_to_grayscale(inputs)
        channel_index = tf.random.uniform(shape=[
            8,
        ],
                                          minval=0,
                                          maxval=3,
                                          dtype=tf.int32)

        logits = bit_upsampler(inputs=inputs,
                               inputs_slice=inputs_slice,
                               channel_index=channel_index)[0]
        self.assertEqual(logits.shape, (8, 32, 32, 1, 256))

        inputs = base_utils.convert_bits(inputs, n_bits_in=8, n_bits_out=3)
        output = bit_upsampler.sample(gray_cond=grayscale, bit_cond=inputs)
        self.assertEqual(output['bit_up_argmax'].shape, (8, 32, 32, 3))
def build_model(config):
    """Builds model."""
    name = config.model.name
    optimizer = train_utils.build_optimizer(config)

    zero_64 = tf.zeros((1, 64, 64, 3), dtype=tf.int32)
    zero_64_slice = tf.zeros((1, 64, 64, 1), dtype=tf.int32)
    zero = tf.zeros((1, 256, 256, 3), dtype=tf.int32)
    zero_slice = tf.zeros((1, 256, 256, 1), dtype=tf.int32)

    if name == 'coltran_core':
        model = colorizer.ColTranCore(config.model)
        model(zero_64, training=False)
    elif name == 'color_upsampler':
        model = upsampler.ColorUpsampler(config.model)
        model(inputs=zero_64, inputs_slice=zero_64_slice, training=False)
    elif name == 'spatial_upsampler':
        model = upsampler.SpatialUpsampler(config.model)
        model(inputs=zero, inputs_slice=zero_slice, training=False)

    ema_vars = model.trainable_variables
    ema = train_utils.build_ema(config, ema_vars)
    return model, optimizer, ema