def setLevel1(self, datafile, source=''): """ """ self.setSource(source) self.teleLon = self.datafile['hk/antenna0/tracker/siteActual'][ 0, 0] / (60.**2 * 1000.) self.teleLat = self.datafile['hk/antenna0/tracker/siteActual'][ 0, 1] / (60.**2 * 1000.) self.datafile = datafile self.attributes = self.datafile['comap'].attrs self.tsamp = float(self.attributes['tsamp'].decode()) self.obsid = self.attributes['obsid'].decode() self.source = self.attributes['source'].decode() # load but do not read yet. self.x = self.datafile['spectrometer/pixel_pointing/pixel_ra'] self.y = self.datafile['spectrometer/pixel_pointing/pixel_dec'] self.utc = self.datafile['spectrometer/MJD'] sunra, sundec, sundist = Coordinates.getPlanetPosition('Sun', self.teleLon, self.teleLat, self.utc[:], returnall=True) sunra, sundec = Coordinates.precess(sunra, sundec, self.utc[:]) pa = Coordinates.pa(sunra, sundec, self.utc, self.teleLon, self.teleLat) for i in range(self.x.shape[0]): self.x[i, :], self.y[i, :] = Coordinates.Rotate( self.x[i, :], self.y[i, :], sunra, sundec, -pa) self.xCoordinateName = r'$\Delta$A' self.yCoordinateName = r'$\Delta$E' self.el = self.datafile['spectrometer/pixel_pointing/pixel_el'] self.tod_bavg = self.datafile['spectrometer/band_average'] self.features = self.datafile['spectrometer/features'][:] self.mask = np.ones(self.features.size).astype(int) self.mask[self.featureBits(self.features.astype(float), 13)] = 0 self.mask[self.features == 0] = 0 self.mask = self.mask.astype(int) # If we don't spe self.setCrval() self.setWCS(self.crval, self.cdelt, self.crpix, self.ctype)
def MakeMap(self, tod, ra, dec, mjd, el): #takes a 1D tod array and makes a simple map #produce arrays for mapping npix = self.naxis[0] * self.naxis[1] pixbins = np.arange(0, npix + 1).astype(int) nHorns, nSBs, nChans, nSamples = tod.shape rms = Filtering.calcRMS(tod) maps = np.zeros((nHorns, nSBs, nChans, self.naxis[0], self.naxis[1])) for i in range(nHorns): good = (np.isnan(ra[i, :]) == False) & (np.isnan(tod[i, 0, 0]) == False) pa = Coordinates.pa(ra[i, good], dec[i, good], mjd[good], self.lon, self.lat) x, y = Coordinates.Rotate(ra[i, good], dec[i, good], self.x0, self.y0, -pa) nbins = 10 xbins = np.linspace(np.min(x), np.max(x), nbins + 1) xmids = (xbins[1:] + xbins[:-1]) / 2. xbw, _ = np.histogram(x, xbins) ybw, _ = np.histogram(y, xbins) todAvg = np.nanmean(np.nanmean(tod[i, ...], axis=0), axis=0) fitx0, fity0 = self.initialPeak(todAvg[good], x, y) r = np.sqrt((x - fitx0)**2 + (y - fity0)**2) close = (r < 6. / 60.) pix = ang2pixWCS(self.wcs, x, y).astype('int') mask = np.where((pix != -1))[0] h, b = np.histogram(pix, pixbins, weights=(pix != -1).astype(float)) self.hits = np.reshape(h, (self.naxis[0], self.naxis[1])) for j in range(nSBs): for k in range(1): #nChans): todmap = tod[i, j, k, good] if self.filtertod: txbw, _ = np.histogram(x, xbins, weights=todmap) tybw, _ = np.histogram(y, xbins, weights=todmap) fb = txbw / xbw gd = np.isfinite(fb) pmdl = np.poly1d(np.polyfit(xmids[gd], fb[gd], 1)) todmap -= pmdl(x) fb = tybw / ybw gd = np.isfinite(fb) pmdl = np.poly1d(np.polyfit(xmids[gd], fb[gd], 1)) todmap -= pmdl(y) w, b = np.histogram(pix[mask], pixbins, weights=todmap[mask]) # w, b = np.histogram(pix[:], pixbins, weights=tod[i,j,k,:]) m = np.reshape(w, (self.naxis[0], self.naxis[1])) maps[i, j, k, ...] = m / self.hits return maps