Example #1
0
def run():
    # torch.multiprocessing.freeze_support()

    optimizer = Optimizer(optimizer_config)

    for parameters in optimizer.get_parameters():
        hyperparameters = Namespace(**parameters["parameters"])

        model = PyTorchLightningModel(hparams=hyperparameters)

        comet_logger = CometLogger(
            api_key=get_config("comet.api_key"),
            rest_api_key=get_config("comet.api_key"),
            optimizer_data=parameters,
        )

        trainer = Trainer(
            max_epochs=1,
            # early_stop_callback=True, # requires val_loss be logged
            logger=[comet_logger],
            # num_processes=2,
            # distributed_backend='ddp_cpu'
        )

        trainer.fit(model)
Example #2
0
def run_optimizer():
    optimizer = Optimizer(API_KEY)

    params = """
    epochs integer [5, 10] [5]
    batch_size integer [5000, 15000] [10000]
    weight_regularizer real [1e-5, 1e-2] [1e-3]
    """

    optimizer.set_params(params)
    # get_suggestion will raise when no new suggestion is available
    i = 0
    while True:

        # Get a suggestion
        suggestion = optimizer.get_suggestion()
        print()
        print('----------------------------------')
        print(i)
        print(suggestion)
        print('batch_size', suggestion['batch_size'])
        print('epochs', suggestion['epochs'])
        print('weight_regularizer', suggestion['weight_regularizer'])
        print('----------------------------------')
        print()

        # Create a new experiment associated with the Optimizer
        experiment = Experiment(api_key=API_KEY, project_name="consensusnet")

        score = train_with_optimizer(suggestion, experiment)

        # Report the score back
        suggestion.report_score("accuracy", score)
Example #3
0
def main():
    global model_def
    global dataset
    global train
    args = argument_parser()
    config_module = importlib.import_module(args.config)
    configs = config_module.config
    model_def = importlib.import_module(args.model).model
    dataset = importlib.import_module(args.dataset).dataset
    train = importlib.import_module(args.trainer).train

    if 'algorithm' in configs.keys():
        comet_config = parse_comet_config(configs)
        opt = Optimizer(comet_config,
                        api_key=configs['API_KEY'],
                        project_name=configs['project_name'])
        for exp in opt.get_experiments():
            experiment = exp
            config = get_parameters(experiment, configs)
            train(
                **{
                    'config': config,
                    'model_def': model_def,
                    'dataset': dataset,
                    'experiment': experiment
                })
    else:
        if args.experiment:
            experiment = Experiment(api_key=configs['API_KEY'],
                                    project_name=configs['project_name'],
                                    workspace=configs['workspace'])
        else:
            experiment = None
        tried_configs = []
        end = False
        while True:
            importlib.reload(config_module)
            configs = config_module.config
            possible_configs = get_configurations(configs)
            for config_idx, config in enumerate(possible_configs):
                if config_idx == len(possible_configs) - 1:
                    end = True
                if config in tried_configs:
                    continue
                else:
                    tried_configs.append(config)
                    train(
                        **{
                            'config': config,
                            'model_def': model_def,
                            'dataset': dataset,
                            'experiment': experiment
                        })
                    break
            if end:
                break
        print("******************End of the training session****************")
def run_optimizer():
    optimizer = Optimizer(API_KEY)

    params = """
    epochs integer [15, 100] [20]
    batch_size integer [5000, 15000] [10000]
    filters_1 integer [30, 50] [40]
    filters_2 integer [30, 50] [40]
    filters_3 integer [30, 50] [40]
    kernel_size_1 integer [3, 10] [3]
    kernel_size_2 integer [3, 10] [3]
    kernel_size_3 integer [3, 10] [3]
    pool_size_1 integer [2, 4] [2]
    pool_size_2 integer [2, 4] [2]
    weight_regularizer real [1e-5, 1e-2] [1e-3]
    """

    optimizer.set_params(params)
    # get_suggestion will raise when no new suggestion is available
    i = 0
    while True:
        i += 1

        # Get a suggestion
        suggestion = optimizer.get_suggestion()
        print()
        print('----------------------------------')
        print(i)
        print('batch_size', suggestion['batch_size'])
        print('epochs', suggestion['epochs'])
        print('filters_1', suggestion['filters_1'])
        print('filters_2', suggestion['filters_2'])
        print('filters_3', suggestion['filters_3'])
        print('kernel_size_1', suggestion['kernel_size_1'])
        print('kernel_size_2', suggestion['kernel_size_2'])
        print('kernel_size_3', suggestion['kernel_size_3'])
        print('pool_size_1', suggestion['pool_size_1'])
        print('pool_size_2', suggestion['pool_size_2'])
        print('weight_regularizer', suggestion['weight_regularizer'])
        print('----------------------------------')
        print()

        # Create a new experiment associated with the Optimizer
        experiment = Experiment(api_key=API_KEY, project_name="consensusnet")

        score = train_with_optimizer(suggestion, experiment)

        # Report the score back
        suggestion.report_score("accuracy", score)
Example #5
0
def test_config_gen_2():
    if _COMET_AVAILABLE:
        config = TunerConfigGenerator()
        config.suggest_categorical("categorical", ["a", "b", "c"])
        config.suggest_uniform("uniform", 0.0, 1.0)
        config.suggest_normal("normal", 0.0, 1.0)
        config.suggest_lognormal("lognormal", 0.0, 1.0)
        config.suggest_loguniform("loguniform", 0.0, 1.0)
        config.suggest_discrete("discrete", [10, 20, 30])

        config.export("test.config")

        is_pass = False
        try:
            opt = Optimizer("test.config", experiment_class="OfflineExperiment")

        except exceptions.OptimizerException as e:
            print(e)
            is_pass = False
        except Exception as e:
            print(e)

        else:
            is_pass = True
        assert is_pass
    else:
        assert True
def main():

    num_classes = 10

    # the data, shuffled and split between train and test sets
    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    x_train = x_train.reshape(60000, 784)
    x_test = x_test.reshape(10000, 784)
    x_train = x_train.astype("float32")
    x_test = x_test.astype("float32")
    x_train /= 255
    x_test /= 255
    print(x_train.shape[0], "train samples")
    print(x_test.shape[0], "test samples")

    # convert class vectors to binary class matrices
    y_train = keras.utils.to_categorical(y_train, num_classes)
    y_test = keras.utils.to_categorical(y_test, num_classes)

    config = {
        "algorithm": "bayes",
        "name": "Optimize MNIST Network",
        "spec": {
            "maxCombo": 10,
            "objective": "minimize",
            "metric": "loss"
        },
        "parameters": {
            "first_layer_units": {
                "type": "integer",
                "min": 1,
                "max": 1000
            }
        },
        "trials": 1,
    }

    opt = Optimizer(config)

    for experiment in opt.get_experiments():
        flu = experiment.get_parameter("first_layer_units")
        loss = fit(experiment, x_train, y_train, x_test, y_test, 3, 120, flu)
        # Reverse the score for minimization
        experiment.log_metric("loss", loss)
Example #7
0
def main():

    num_classes = 10

    # the data, shuffled and split between train and test sets
    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    x_train = x_train.reshape(60000, 784)
    x_test = x_test.reshape(10000, 784)
    x_train = x_train.astype("float32")
    x_test = x_test.astype("float32")
    x_train /= 255
    x_test /= 255
    print(x_train.shape[0], "train samples")
    print(x_test.shape[0], "test samples")

    # convert class vectors to binary class matrices
    y_train = keras.utils.to_categorical(y_train, num_classes)
    y_test = keras.utils.to_categorical(y_test, num_classes)

    ## Gets API from config or environment:
    opt = Optimizer()
    pcs_content = """
first_layer_units integer [1,1000] [2]
"""
    # opt.set_params(pcs_content)
    opt.set_params(pcs_content)

    while True:
        try:
            sug = opt.get_suggestion()
        except NoMoreSuggestionsAvailable:
            break
        print("SUG", sug, sug.__dict__)
        flu = sug["first_layer_units"]
        print("FLU", repr(flu))
        score = train(x_train, y_train, x_test, y_test, 3, 120, flu)
        print("Score", score, sug.__dict__)
        # Reverse the score for minimization
        sug.report_score("score", score)
def main(cfg: DictConfig):
    train_length = 500
    val_length = 30
    test_length = 585

    opt = Optimizer(
        config,
        api_key='SWhvV0XPkHV8tPdU8Nv67EXxU',
        project_name=f'stock-gcn-experiment-sequences-{train_length}days')
    for experiment in opt.get_experiments():
        seed = 1
        seed_everything(seed)

        hidden_layer = experiment.get_parameter('hidden_layer')
        hidden_feature = experiment.get_parameter('hidden_feature')
        activation = experiment.get_parameter('activation')
        sequence_length = experiment.get_parameter('sequence_length')

        KOSPI200Dataset.setup(train_length=train_length,
                              val_length=val_length,
                              test_length=test_length,
                              sequence_length=sequence_length
                              )  # 2020.07.03 615일(개장일 기준) 이전이 2018.01.02

        comet_logger = CometLogger(
            api_key="SWhvV0XPkHV8tPdU8Nv67EXxU",
            workspace="dldjwls3",  # Optional
            project_name=f'stock-gcn-experiment-sequences-{train_length}days',
            experiment_name=
            f'gcn_{sequence_length}_{activation}_{hidden_layer}_{hidden_feature}',
            experiment_key=experiment.get_key())

        model = Baseline(seed=seed,
                         sequence_length=sequence_length,
                         num_feature=5,
                         hidden_layer=hidden_layer,
                         hidden_feature=hidden_feature,
                         activation=activation)
        trainer = Trainer(max_epochs=120, gpus=-1, logger=comet_logger)
        trainer.fit(model)
def run_logistic_regression(train_df, validation_df):
    params = """
    C real [0.00001, 0.0001] [0.0001]
    """
    optimizer = Optimizer(API_KEY)
    optimizer.set_params(params)

    while True:
        suggestion = optimizer.get_suggestion()
        experiment = Experiment(api_key=API_KEY, project_name='home-credit')
        experiment.set_name('logreg')
        experiment.log_dataset_hash(
            pd.concat([train_df, validation_df], axis=0))
        experiment.log_parameter(name='C', value=suggestion['C'])

        logreg = LogisticRegression(C=suggestion['C'])
        logreg.fit(train_df.drop(columns=['TARGET']), train_df["TARGET"])

        y_pred = logreg.predict(validation_df.drop(columns=['TARGET']))
        auc_score = roc_auc_score(validation_df['TARGET'], y_pred)
        experiment.log_metric(name='auc_score', value=auc_score)
        suggestion.report_score("auc_score", auc_score)
Example #10
0
def run_optimizer(args):
    optimizer = Optimizer(API_KEY)
    params = """
    epochs integer [5, 10] [5]
    batch_size integer [64, 256] [64]
    learning_rate real [0.0001, 0.01] [0.0001]
    embedding_dimension integer [25, 200] [25]
    """

    optimizer.set_params(params)
    # get_suggestion will raise when no new suggestion is available
    while True:
        # Get a suggestion
        suggestion = optimizer.get_suggestion()

        # Create a new experiment associated with the Optimizer
        experiment = Experiment(
            api_key=API_KEY, project_name="fasttext")

        score = train_with_optimizer(suggestion, experiment, args)
        # Report the score back
        suggestion.report_score("accuracy", score)
def run_lightgbm(train_df, validation_df):
    train_data = lgb.Dataset(data=train_df.drop(columns=['TARGET']),
                             label=train_df['TARGET'])
    validation_data = lgb.Dataset(data=validation_df.drop(columns=['TARGET']),
                                  label=validation_df['TARGET'])
    num_round = 10

    params = """
    num_leaves integer [31, 51] [31]
    num_trees integer [50, 100] [50]
    """
    optimizer = Optimizer(API_KEY)
    optimizer.set_params(params)

    while True:
        suggestion = optimizer.get_suggestion()
        experiment = Experiment(api_key=API_KEY, project_name='home-credit')
        experiment.set_name('lightgbm')

        _param = {
            'num_leaves': suggestion['num_leaves'],
            'num_trees': suggestion['num_trees'],
            'objective': 'binary',
            'metric': 'auc'
        }

        experiment.log_multiple_params(_param)
        experiment.log_dataset_hash(
            pd.concat([train_df, validation_df], axis=0))
        bst = lgb.train(_param,
                        train_data,
                        num_round,
                        valid_sets=[validation_data])
        y_pred = bst.predict(validation_df.drop(columns=['TARGET']))

        auc_score = roc_auc_score(validation_df['TARGET'], y_pred)
        experiment.log_metric(name='auc_score', value=auc_score)
        suggestion.report_score("auc_score", auc_score)
def run_random_forest(train_df, validation_df):
    params = """
    n_estimators integer [100, 500] [100]
    """
    optimizer = Optimizer(API_KEY)
    optimizer.set_params(params)

    while True:
        suggestion = optimizer.get_suggestion()
        experiment = Experiment(api_key=API_KEY, project_name='home-credit')
        experiment.log_dataset_hash(
            pd.concat([train_df, validation_df], axis=0))
        experiment.set_name('rf')
        experiment.log_parameter(name='n_estimators',
                                 value=suggestion['n_estimators'])

        rf = RandomForestClassifier(n_estimators=suggestion['n_estimators'])
        rf.fit(train_df.drop(columns=['TARGET']), train_df["TARGET"])

        y_pred = rf.predict(validation_df.drop(columns=['TARGET']))
        auc_score = roc_auc_score(validation_df['TARGET'], y_pred)
        experiment.log_metric(name='auc_score', value=auc_score)
        suggestion.report_score("auc_score", auc_score)
Example #13
0
def optimize(max_n,
             model_name,
             dataset_name,
             batch_size,
             n_epochs,
             use_comet,
             comet_name,
             model_module_index=None):
    dataset_config, model = initialize_model(dataset_name, model_name,
                                             model_module_index)
    rocket = None

    #if use_comet:
    #    rocket = CometConnection(comet_name=comet_name, dataset_config=dataset_config)
    # TODO: add the optimizer code to comet_connection.py

    params_range = get_params_range(model)
    params_range['spec']['maxCombo'] = max_n
    optimizer = Optimizer(params_range, api_key=COMET_KEY)

    for experiment in optimizer.get_experiments(project_name=PROJECT_NAME):
        experiment.set_name(comet_name)
        experiment.add_tag("optimizer_experiment")
        model_exp = model
        p = {
            k: experiment.get_parameter(k)
            for k in params_range['parameters'].keys()
        }
        model_exp.params = p
        model_exp = train_model(model,
                                dataset_name,
                                dataset_config,
                                batch_size,
                                n_epochs,
                                compile_dict=COMPILE_DICT)
        loss = model_exp.test_results[0]
        experiment.log_metric("loss", loss)
Example #14
0
    def optimize_hyper_param(self, main_config, opt_config_file_path):
        """
        Optimizer model hyper-parameters and upload results to cloud.
        """
        self.opt_config_file_path = opt_config_file_path

        print("# load model-optimization config")
        config = load_config(config_file_path=self.opt_config_file_path,
                             purpose="optimize_tree")
        element.pop("metric", None)
        self.opt = Optimizer(
            config,
            api_key="VNQSdbR1pw33EkuHbUsGUSZWr",
            project_name="general",
            workspace="florpi",
            experiment_class="OfflineExperiment",
            #offline_directory="/cosma/home/dp004/dc-beck3/4_GaHaCo/GaHaCo/comet/",
            offline_directory="/cosma/home/dp004/dc-cues1/GaHaCo/comet/",
        )
Example #15
0
        #"Layer_ints":{"type":"integer","min":2,"max":6}

        #"activation":{"type": "categorical","values":["elu","sigmoid"]}
    },

    # Declare what we will be optimizing, and how:
    "spec": {
        "metric": "ROC",
        "objective": "maximize",
    },
}

parameters = open("parameters.yml")
yamlparameters = yaml.load(parameters, Loader=yaml.FullLoader)
opt = Optimizer(config,
                api_key=yamlparameters["comet_api_key"],
                project_name="NNqhmv6",
                auto_metric_logging=True)

X_train, X_test, y_train, y_test = get_features(yamlparameters["DataDir"])

for experiment in opt.get_experiments():
    keras_model = models.qdense_model(
        Input(shape=X_train.shape[1:]),
        l1Reg=experiment.get_parameter("Regularization"),
        bits=14,
        ints=2)
    #keras_model = models.dense_model(Input(shape=X_train.shape[1:]), l1Reg=experiment.get_parameter("Regularization"))
    startlearningrate = experiment.get_parameter("learning_rate")
    adam = Adam(lr=startlearningrate,
                beta_1=experiment.get_parameter("learning_beta1"),
                beta_2=experiment.get_parameter("learning_beta2"),
Example #16
0
import torch.nn.functional as F
from sklearn import metrics

# Constant to modify
PROJ_LOCATION = '/vol/ml/xduan7/Projects/MoReL'
DATA_LOCATION = '/vol/ml/xduan7/Data'

import sys
sys.path.extend([PROJ_LOCATION])
from utils.dataset.drug_resp_dataset import *
from network.gnn.gat.gat import EdgeGATEncoder
from network.gnn.gcn.gcn import EdgeGCNEncoder
from network.gnn.mpnn.mpnn import MPNN
from network.simple_uno import SimpleUno

comet_opt = Optimizer(project_name='Drug Response with Graph Models')

# Construct the datasets for training and testing
bigrun_cell_id_list = pd.read_csv(DATA_LOCATION + '/bigrun_cell_ids.csv',
                                  index_col=None).values.reshape(
                                      (-1)).tolist()
bigrun_drug_id_list = pd.read_csv(DATA_LOCATION + '/bigrun_drug_ids.csv',
                                  index_col=None).values.reshape(
                                      (-1)).tolist()

trn_dset, tst_dset, _, _ = get_datasets(
    resp_data_path=(DATA_LOCATION +
                    '/combined_single_drug_response_aggregated.csv'),
    resp_aggregated=True,
    resp_target='AUC',
    resp_data_sources=DATA_SOURCES,
Example #17
0
def train(X_train=None,
          Y_train=None,
          validation_data=(None, None),
          batch=None,
          epochs=None):
    model = build_model()
    model.compile(optimizer=Adam(), loss="mse", metrics=["accuracy"])
    results = model.fit(X_train,
                        Y_train,
                        batch_size=batch,
                        epochs=epochs,
                        validation_data=validation_data)
    return results


opt = Optimizer(sys.argv[1],
                workspace="returncode13",
                project_name="UNET-training-01")

(X, Y, X_val, Y_val) = create_data()

for experiment in opt.get_experiments():
    results = train(X,
                    Y,
                    batch=experiment.get_parameter('batch'),
                    epochs=100,
                    validation_data=(X_val, Y_val))
    experiment.log_metric('loss', results.history['loss'])
    experiment.log_metric('accuracy', results.history['accuracy'])
Example #18
0
    def optimise(self):
        config = {
            # We pick the Bayes algorithm:
            "algorithm": "bayes",

            # Declare your hyperparameters in the Vizier-inspired format:
            "parameters": {
                "max_depth": {
                    "type": "integer",
                    "min": self.max_depth["min"],
                    "max": self.max_depth["max"],
                    "scalingType": "uniform"
                },
                "learning_rate": {
                    "type": "float",
                    "min": self.learning_rate["min"],
                    "max": self.learning_rate["max"],
                    "scalingType": "uniform"
                },
                "gamma": {
                    "type": "float",
                    "min": self.gamma["min"],
                    "max": self.gamma["max"],
                    "scalingType": "uniform"
                },
                "subsample": {
                    "type": "float",
                    "min": self.subsample["min"],
                    "max": self.subsample["max"],
                    "scalingType": "uniform"
                },
                "min_child_weight": {
                    "type": "float",
                    "min": self.min_child_weight["min"],
                    "max": self.min_child_weight["max"],
                    "scalingType": "uniform"
                },
                "reg_alpha": {
                    "type": "float",
                    "min": self.alpha["min"],
                    "max": self.alpha["max"],
                    "scalingType": "uniform"
                },
                "early_stopping": {
                    "type": "integer",
                    "min": self.early_stopping["min"],
                    "max": self.early_stopping["max"],
                    "scalingType": "uniform"
                },
                "rate_drop": {
                    "type": "float",
                    "min": self.rate_drop["min"],
                    "max": self.rate_drop["max"],
                    "scalingType": "uniform"
                },
                "skip_drop": {
                    "type": "float",
                    "min": self.skip_drop["min"],
                    "max": self.skip_drop["max"],
                    "scalingType": "uniform"
                }
            },

            # Declare what we will be optimizing, and how:
            "spec": {
                "metric": "ROC",
                "objective": "maximize",
            },
        }
        opt = Optimizer(config,
                        api_key=self.comet_api_key,
                        project_name=self.comet_project_name,
                        auto_metric_logging=True)

        for experiment in opt.get_experiments():
            self.param["learning_rate"] = experiment.get_parameter(
                "learning_rate")
            self.num_rounds = self.n_estimators
            self.param["subsample"] = experiment.get_parameter("subsample")
            self.param["max_depth"] = experiment.get_parameter("max_depth")
            self.param["gamma"] = experiment.get_parameter("gamma")
            self.param["reg_alpha"] = experiment.get_parameter("reg_alpha")
            self.param["min_child_weight"] = experiment.get_parameter(
                "min_child_weight")
            self.param["rate_drop"] = experiment.get_parameter("rate_drop")
            self.param["skip_drop"] = experiment.get_parameter("skip_drop")
            self.early_stopping_rounds = experiment.get_parameter(
                "early_stopping")

            self.train()
            self.test()
            auc, binary_accuracy = self.evaluate()

            experiment.log_metric("ROC", auc)
            experiment.log_metric("Binary_Accuracy", binary_accuracy)
            experiment.log_metric("Best Boost Round", self.boost_rounds)
            experiment.log_metric("score", (auc / 0.5 - 1) +
                                  (1 - self.boost_rounds / self.n_estimators))
Example #19
0
                     'to_tokens': False,
                     'embedding_dim': 50,
                     'embedding_type': 'glove',
                     'embedding_source': 'glove.6B.50d'}

# Task and experiment name
task_name = experiment_params['task_name']
experiment_name = experiment_params['experiment_name']

# Load optimiser config
optimiser_config_file = 'model_optimiser_configs.json'
with open(optimiser_config_file) as json_file:
    optimiser_config = json.load(json_file)[experiment_params['model_name']]

# Set up comet optimiser
model_optimiser = Optimizer(optimiser_config)

# Data set and output paths
dataset_name = 'token_dataset' if experiment_params['to_tokens'] else 'text_dataset'
dataset_dir = os.path.join(task_name, dataset_name)
embeddings_dir = 'embeddings'

# Create appropriate directories if they don't exist
for directory in [task_name, dataset_dir, embeddings_dir]:
    if not os.path.exists(directory):
        os.mkdir(directory)

print("------------------------------------")
print("Running experiment...")
print(task_name + ": " + experiment_name)
Example #20
0
import torch.optim as optim
from sklearn.datasets import load_iris
import enchanter.tasks as tasks
import enchanter.addons as addons       # pylint: disable=W0611
import enchanter.addons.layers as layers
from enchanter.utils import comet

config = comet.TunerConfigGenerator(
    algorithm="bayes",
    metric="train_avg_loss",
    objective="minimize",
    seed=0,
    trials=5
)

config.suggest_categorical("activation", ["addons.mish", "torch.relu", "torch.sigmoid"])

opt = Optimizer(config.generate())

for experiment in opt.get_experiments():
    model = layers.MLP([4, 512, 128, 3], eval(experiment.get_parameter("activation")))
    optimizer = optim.Adam(model.parameters())
    runner = tasks.ClassificationRunner(
        model, optimizer=optimizer, criterion=nn.CrossEntropyLoss(), experiment=experiment
    )
    x, y = load_iris(return_X_y=True)
    x = x.astype("float32")
    y = y.astype("int64")

    runner.fit(x, y, epochs=1, batch_size=32)
    def score_bayes_trainer_harness(self):
        """
      Returns
      -------
      :return: ``None``
          None, but results in saved models suitable for scoring and trained
          on all available data.
      """

        self.__log.info("Starting generic score train loop")
        train_data = self.train_data
        val_data = self.val_data
        models = self.model
        out_path = self.out_path
        type_time_series = self.type_time_series
        param_search = self.param_search
        trainer = self.trainer
        api_key = self.api_key
        rest_api_key = self.rest_api_key
        workspace = self.workspace

        for models_ in models.get(type_time_series):

            for key, value in models_.items():

                model_name = key
                model = value[0]
                model_kwarg = value[1]

                if param_search == 'bayes':

                    search_space = GluonTSBayesEstimatorKwargs.BayesModelLookup.get(
                        model_name)

                    # comet-ml hyperparameter optimization configuration (bayes in this case)
                    config = {
                        "algorithm": "bayes",
                        "spec": {
                            "maxCombo": 5,  # no of combinations to try
                            "objective": "minimize",
                            "metric": "loss",
                            "seed": 42,
                            "gridSize": 10,
                            "minSampleSize": 100,
                            "retryLimit": 20,
                            "retryAssignLimit": 0,
                        },
                        "name": "My Bayesian Search",
                        "trials": 1,
                    }

                    config['parameters'] = search_space

                    # current time
                    timestr = time.strftime("%Y%m%d-%H%M%S")
                    # comet-ml project name for the optimization
                    project_name = f"optimizer-{model_name}-{timestr}"
                    # initialize the comet-ml optimizer
                    optimizer = Optimizer(config=config,
                                          api_key=api_key,
                                          project_name=project_name)
                    # loop through the parameter combinations that the bayes optimizer suggests
                    for experiment in optimizer.get_experiments():

                        # explicitly set the model parameters (should be generic for any model)
                        if model_name == "SimpleFeedForward":

                            hidden1 = experiment.get_parameter(
                                "hidden_layer_size")
                            hidden2 = experiment.get_parameter(
                                "hidden2_layer_size")
                            model_kwarg['num_hidden_dimensions'] = [
                                hidden1, hidden2
                            ]

                            self.__log.info(
                                f"model_kwarg['num_hidden_dimensions'] : {model_kwarg['num_hidden_dimensions']}"
                            )

                        elif model_name == "DeepAREstimate":

                            model_kwarg[
                                'num_layers'] = experiment.get_parameter(
                                    "num_layers")
                            model_kwarg[
                                'num_cells'] = experiment.get_parameter(
                                    "num_cells")
                            model_kwarg[
                                'cell_type'] = experiment.get_parameter(
                                    "cell_type")
                            model_kwarg[
                                'dropout_rate'] = experiment.get_parameter(
                                    "dropout_rate")

                        # set trainer params
                        trainer.learning_rate = experiment.get_parameter(
                            "learning_rate")
                        trainer.batch_size = experiment.get_parameter(
                            "batch_size")
                        trainer.epochs = 2

                        # initialize model from the suggested hyperparameters
                        model = model.from_hyperparameters(**model_kwarg)
                        # set the trainer
                        model.trainer = trainer

                        self.__log.info(
                            f'\n model.trainer.lr : {model.trainer.learning_rate}'
                        )
                        self.__log.info(
                            f'model.trainer.epochs : {model.trainer.epochs}\n')

                        # train the model
                        predictor = model.train(train_data)
                        # make predictions
                        forecast_it, ts_it = make_evaluation_predictions(
                            dataset=val_data,  # test dataset
                            predictor=predictor,  # predictor
                            num_eval_samples=
                            1,  # number of sample paths we want for evaluation
                        )

                        # convert gluonts objects to lists
                        forecasts = list(forecast_it)
                        tss = list(ts_it)

                        # get prediction length
                        prediction_length = forecasts[0].mean.shape[0]

                        y_test_ = list(val_data)[0]['target']
                        y_preds_ = forecasts[0].mean
                        y_test_ = y_test_[-prediction_length:]

                        mae_ = mean_absolute_error(y_test_, y_preds_)

                        # Report the loss to comet
                        experiment.log_metric("loss", mae_)

                experiment.end()

            # initialize comet REST API to retrieve the best hyperparameters
            comet_api = comet_ml.API(rest_api_key=rest_api_key)

            project = comet_api.get(workspace=workspace,
                                    project_name=optimizer.
                                    experiment_kwargs['project_name'].lower())

            # get the experiment ids
            exp_ids = [x.id for x in project]

            scores_df = pd.DataFrame(index=exp_ids, columns=['metric'])
            # loop through the experiments within the comet project
            for exp_id in exp_ids:

                exp = comet_api.get(
                    f"{workspace}/{project_name.lower()}/{exp_id}")

                scores_df.at[exp_id,
                             'metric'] = exp.get_metrics()[0]['metricValue']

            scores_df.metric = scores_df.metric.map(float)
            # get experiment_id of the best score
            best_exp_id = scores_df.metric.idxmin()
            # get the best experiment
            exp = comet_api.get(
                f"{workspace}/{project_name.lower()}/{best_exp_id}")
            # get the best hyperparameters
            best_params = {
                x['name']: x['valueCurrent']
                for x in exp.get_parameters_summary() if x['name'] != 'f'
            }
            # save best params in model_name-keyed dictionary for later use
            self.best_params[model_name] = best_params
Example #22
0
def main(alpha=0.5):
    scaler, yscaler, X_train, X_test, y_train, y_test = process_data()

    config = {
        # We pick the Bayes algorithm:
        'algorithm': 'bayes',
        'name': 'fine tune LightGBM',
        # Declare your hyperparameters in the Vizier-inspired format:
        'parameters': {
            'n_estimators': {
                'type': 'integer',
                'min': 50,
                'max': 5000
            },
            'max_depth': {
                'type': 'integer',
                'min': 10,
                'max': 50
            },
            'num_leaves': {
                'type': 'integer',
                'min': 100,
                'max': 500
            },
            'reg_alpha': {
                'type': 'float',
                'min': 0.00001,
                'max': 0.2,
                'scalingType': 'loguniform',
            },
            'reg_lambda': {
                'type': 'float',
                'min': 0.00001,
                'max': 0.2,
                'scalingType': 'loguniform',
            },
            'subsample': {
                'type': 'float',
                'min': 0.2,
                'max': 1.0
            },
            'colsample_bytree': {
                'type': 'float',
                'min': 0.2,
                'max': 1.0
            },
            'min_child_weight': {
                'type': 'float',
                'min': 0.001,
                'max': 0.1,
                'scalingType': 'loguniform',
            },
        },
        # Declare what we will be optimizing, and how:
        'spec': {
            'metric': 'loss',
            'objective': 'minimize'
        },
    }

    # Next, create an optimizer, passing in the config:
    # (You can leave out API_KEY if you already set it)
    opt = Optimizer(config,
                    api_key=os.environ['COMET_API_KEY'],
                    project_name='color-ml')

    for _, experiment in enumerate(opt.get_experiments()):
        experiment.log_parameter('colorspace', 'rgb')
        params = {
            'n_estimators': experiment.get_parameter('n_estimators'),
            'colsample_bytree': experiment.get_parameter('colsample_bytree'),
            'num_leaves': experiment.get_parameter('num_leaves'),
            'max_depth': experiment.get_parameter('max_depth'),
            'reg_alpha': experiment.get_parameter('reg_alpha'),
            'reg_lambda': experiment.get_parameter('reg_lambda'),
            'subsample': experiment.get_parameter('subsample'),
            'min_child_weight': experiment.get_parameter('min_child_weight'),
        }
        loss, std = fit(experiment, X_train, y_train, params, alpha)
        experiment.log_metric('loss', loss)
        experiment.log_metric('std', std)
Example #23
0
print("Action space shape:", ac_space)

assert ob_space is not None

#%%
config = {
  "algorithm": "bayes",
  "parameters": {
      "lr": {"type": "float", "min": np.log(1e-5), "max": np.log(1e-1), "scalingType": "loguniform" },
  },
  "spec": {
      "metric": "Speed",
      "objective": "maximize",
  },
}
optimizer = Optimizer(config, api_key="OZwyhJHyqzPZgHEpDFL1zxhyI",
                    project_name="rl-in-wifi")

#%%
teacher = Teacher(env, 1, Preprocessor(False))

# actor_l = [64, 32, 16]
# critic_l = [64, 32, 16]

# lr_actor = 1e-5
# lr_critic = 4e-5

for experiment in optimizer.get_experiments():
    lr = experiment.get_parameter("lr")
    # config = Config(buffer_size=4*steps_per_ep*threads_no, batch_size=256, gamma=0.98, tau=1e-3, lr_actor=lr_actor, lr_critic=lr_critic, update_every=1)
    # lr = 1e-7
    config = Config(buffer_size=4*steps_per_ep*threads_no, batch_size=256, gamma=0.8, tau=1e-3, lr=lr, update_every=1)
from sigopt.examples import franke_function
from comet_ml import Optimizer
import sys


def fit(x, y):
    return franke_function(x, y)


#opt=Optimizer(sys.argv[1],api_key="6krXLYdn4mMFKPsF8jwrFwXtu",workspace="returncode13",project_name="franke-function-opt-distributed-01")

opt = Optimizer(sys.argv[1],
                workspace="returncode13",
                project_name="franke-function-opt-distributed-02")

for experiment in opt.get_experiments():
    val = fit(experiment.get_parameter('x'), experiment.get_parameter('y'))
    experiment.log_metric("val", val)
    #print(experiment.get_parameter('x'),experiment.get_parameter('y'))
Example #25
0
def main():
    """ Main tracking script """
    args = parse_args()
    print(args)
    from comet_ml import Optimizer

    # We only need to specify the algorithm and hyperparameters to use:
    config = {
        # We pick the Bayes algorithm:
        "algorithm": "bayes",

        # Declare your hyperparameters in the Vizier-inspired format:
        "parameters": {
            "alpha": {
                "type": "float",
                "min": 0.01,
                "max": 0.3
            },
            "lr": {
                "type": "float",
                "min": 5e-5,
                "max": 5e-2
            },
            "gamma": {
                "type": "float",
                "min": 0.75,
                "max": 0.99
            },
        },

        # Declare what we will be optimizing, and how:
        "spec": {
            "metric": "VC",
            "objective": "maximize",
            "seed": args.rng_seed,
        },
    }

    # Next, create an optimizer, passing in the config:
    opt = Optimizer(config, project_name=args.experiment)

    for experiment in opt.get_experiments():
        experiment.auto_metric_logging = False
        experiment.workspace = 'TrackToLearn'
        experiment.parse_args = False
        experiment.disabled = not args.use_comet

        gamma = experiment.get_parameter("gamma")
        alpha = experiment.get_parameter("alpha")
        lr = experiment.get_parameter("lr")

        td3_experiment = SACTrackToLearnTraining(
            # Dataset params
            args.path,
            args.experiment,
            args.name,
            args.dataset_file,
            args.subject_id,
            args.test_dataset_file,
            args.test_subject_id,
            args.reference_file,
            args.ground_truth_folder,
            # RL params
            args.max_ep,
            args.log_interval,
            args.action_std,
            args.valid_noise,
            lr,
            gamma,
            alpha,
            # TD3 params
            args.training_batch_size,
            # Env params
            args.n_seeds_per_voxel,
            args.max_angle,
            args.min_length,
            args.max_length,
            args.step_size,  # Step size (in mm)
            args.tracking_batch_size,
            args.n_signal,
            args.n_dirs,
            # Model params
            args.n_latent_var,
            args.hidden_layers,
            args.add_neighborhood,
            # Experiment params
            args.use_gpu,
            args.rng_seed,
            experiment,
            args.render,
            args.run_tractometer,
            args.load_teacher,
            args.load_policy,
        )
        td3_experiment.run()
Example #26
0
    def optimise(self):
        config = {
            # We pick the Bayes algorithm:
            "algorithm": "bayes",

            # Declare your hyperparameters in the Vizier-inspired format:
            "parameters": {
                "n_estimators": {
                    "type": "integer",
                    "min": self.n_estimators["min"],
                    "max": self.n_estimators["max"],
                    "scalingType": "uniform"
                },
                "max_depth": {
                    "type": "integer",
                    "min": self.max_depth["min"],
                    "max": self.max_depth["max"],
                    "scalingType": "uniform"
                },
                "learning_rate": {
                    "type": "float",
                    "min": self.learning_rate["min"],
                    "max": self.learning_rate["max"],
                    "scalingType": "uniform"
                },
                "gamma": {
                    "type": "float",
                    "min": self.gamma["min"],
                    "max": self.gamma["max"],
                    "scalingType": "uniform"
                },
                "subsample": {
                    "type": "float",
                    "min": self.subsample["min"],
                    "max": self.subsample["max"],
                    "scalingType": "uniform"
                },
                "min_child_weight": {
                    "type": "float",
                    "min": self.min_child_weight["min"],
                    "max": self.min_child_weight["max"],
                    "scalingType": "uniform"
                },
                "reg_alpha": {
                    "type": "float",
                    "min": self.alpha["min"],
                    "max": self.alpha["max"],
                    "scalingType": "uniform"
                },
            },

            # Declare what we will be optimizing, and how:
            "spec": {
                "metric": "ROC",
                "objective": "maximize",
            },
        }
        opt = Optimizer(config,
                        api_key=self.comet_api_key,
                        project_name=self.comet_project_name,
                        auto_metric_logging=True)

        for experiment in opt.get_experiments():
            self.model.learning_rate = experiment.get_parameter(
                "learning_rate")
            self.model.n_estimators = experiment.get_parameter("n_estimators")
            self.model.subsample = experiment.get_parameter("subsample")
            self.model.max_depth = experiment.get_parameter("max_depth")
            self.model.gamma = experiment.get_parameter("gamma")
            self.model.reg_alpha = experiment.get_parameter("reg_alpha")
            self.model.min_child_weight = experiment.get_parameter(
                "min_child_weight")

            self.train()
            self.test()
            auc, binary_accuracy = self.evaluate()

            experiment.log_metric("ROC", auc)
            experiment.log_metric("Binary_Accuracy", binary_accuracy)
Example #27
0
def optimize(parsed, subcommand_args):
    if parsed.OPTIMIZER is None:
        parsed.OPTIMIZER = parsed.PYTHON_SCRIPT
        parsed.PYTHON_SCRIPT = None

    # Pass it on, in case it needs/wants it:
    subcommand_args += [parsed.OPTIMIZER]
    if parsed.trials is not None:
        subcommand_args += ["--trials", str(parsed.trials)]

    # Is the COMET_API_KEY available?
    config = get_config()
    api_key = config["comet.api_key"]
    if api_key is None:
        raise Exception(
            """Please set your API key: see https://www.comet.ml/docs/python-sdk/advanced/#python-configuration"""
        )

    if not (os.path.isfile(parsed.OPTIMIZER) or len(parsed.OPTIMIZER) == 32):
        raise Exception("Optimizer should be either file or id: '%s'" %
                        parsed.OPTIMIZER)

    # Create a new Optimizer, or use existing one:
    if parsed.PYTHON_SCRIPT is None:
        # Don't echo URL if PYTHON_SCRIPT isn't listed:
        opt = Optimizer(parsed.OPTIMIZER, trials=parsed.trials, verbose=0)
    else:
        if not os.path.isfile(parsed.PYTHON_SCRIPT):
            raise Exception("Python script file '%s' not found" %
                            parsed.PYTHON_SCRIPT)
        opt = Optimizer(parsed.OPTIMIZER, trials=parsed.trials)

    if parsed.dump is not None:
        with open(parsed.dump, "w") as fp:
            fp.write(str(opt.status()))

    if parsed.PYTHON_SCRIPT is None:
        # Just print the optimizer_id
        print(opt.id)
        # And exit
        sys.exit(0)

    environ = os.environ.copy()
    environ["COMET_OPTIMIZER_ID"] = opt.id
    COMET_EXECUTABLE = parsed.executable or sys.executable

    bootstrap_dir = os.path.dirname(comet_ml.bootstrap.__file__)

    # Prepend the bootstrap dir to a potentially existing PYTHON PATH, prepend
    # so we are sure that we are the first one to be executed and we cannot be
    # sure that other sitecustomize.py files would call us
    if "PYTHONPATH" in environ:
        if bootstrap_dir not in environ["PYTHONPATH"]:
            environ["PYTHONPATH"] = "%s:%s" % (bootstrap_dir,
                                               environ["PYTHONPATH"])
    else:
        environ["PYTHONPATH"] = bootstrap_dir

    command_line = [COMET_EXECUTABLE, parsed.PYTHON_SCRIPT] + subcommand_args
    subprocesses = []  # type: List[subprocess.Popen]

    for j in range(parsed.parallel):
        environ["COMET_OPTIMIZER_PROCESS_ID"] = str(j)
        sub = subprocess.Popen(command_line, env=environ)
        subprocesses.append(sub)

    exit_code = 0

    try:
        for sub in subprocesses:
            sub.wait()
            if sub.returncode != 0:
                exit_code = 1
    except KeyboardInterrupt:
        # Ask nicely for subprocesses to exit
        for sub in subprocesses:
            # TODO: Check behavior on Windows
            sub.send_signal(signal.SIGINT)

        # Check that all subprocesses exit cleanly
        i = 0

        while i < 60:
            all_dead = True

            for sub in subprocesses:
                sub.poll()
                alive = sub.returncode is None
                all_dead = all_dead and not alive

            if all_dead:
                break

            i += 1
            time.sleep(1)

        # Timeout, hard-kill all the remaining subprocess
        if i >= 60:
            for sub in subprocesses:
                sub.poll()

                if sub.returncode is None:
                    sub.kill()

    print()
    results = opt.status()
    for key in ["algorithm", "status"]:
        print("   ", "%s:" % key, results[key])
    if isinstance(results["endTime"], float) and isinstance(
            results["startTime"], float):
        print(
            "   ",
            "time:",
            (results["endTime"] - results["startTime"]) / 1000,
            "seconds",
        )

    sys.exit(exit_code)
Example #28
0
            "type": "discrete",
            'values': [32, 64, 128, 256, 512]
        },
        "num_epochs": 1,
        "learning_rate": 0.001
    },

    # Declare what we will be optimizing, and how:
    "spec": {
        "metric": "train_loss",
        "objective": "minimize",
        # "batch_size": 100,
    },
}

optimizer = Optimizer(config, project_name="MNIST")

# hyper_params = {
#     "sequence_length": 28,
#     "input_size": 28,
#     "hidden_size": 128,
#     "num_layers": 2,
#     "num_classes": 10,
#     "batch_size": 100,
#     "num_epochs": 10,
#     "learning_rate": 0.01
# }


class Net(nn.Module):
    def __init__(self):
def main():
    opt = Optimizer("0FyTyofhjonvvEMrssqMng6pC")
    experiment = Experiment(api_key="0FyTyofhjonvvEMrssqMng6pC",
                            project_name="route_experiment_horizontal",
                            workspace="pingakshya2008")

    dataframe = pd.read_csv("C:/ddr_read/ISPD4/A3.csv")
    #dataframe = pd.read_csv('C:/ddr_read/ISPD4/ispd2_ispd4.csv')
    print(dataframe.head(5))

    array = dataframe.values
    # separate array into input and output components
    X = array[:, 0:9]
    Y = array[:, 10]

    dataframe_test = pd.read_csv(
        "C:/ddr_read/ISPD2/ispd2_final_horizontal.csv")
    print(dataframe_test.head(5))

    array_test = dataframe_test.values
    # separate array into input and output components
    X_test_test = array_test[:, 0:10]
    Y_test_test = array_test[:, 11]

    #Y = dataframe[' Hori route cong (%)']
    print("----------------------xxxx-------------------")
    print(X)

    print("----------------------yyyy-------------------")
    print(Y)
    #scaler = MinMaxScaler(feature_range=(0, 1))
    #rescaledX = scaler.fit_transform(X)
    # summarize transformed data

    scaler = MinMaxScaler(feature_range=(-1, 1))
    rescaledX = scaler.fit_transform(X)
    rescaledX_test = scaler.fit_transform(X_test_test)
    numpy.set_printoptions(precision=4)
    #print(rescaledX[3:9,:])
    validation_size = 0.30
    seed = 10
    X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split(
        rescaledX, Y, test_size=validation_size, random_state=seed)
    print("--- x train-------------")
    print(X_train)
    '''
    # pcs for MLP
    pcs_content = """hidden_layer_sizes integer [1000,2000] [1500]
    solver categorical {sgd,adam,lbfgs} [adam]
    activation categorical {identity,logistic,tanh,relu} [relu]
    learning_rate categorical {constant,invscaling,adaptive} [constant]  
    """
    '''

    i = 0

    ###pcs for random forest
    pcs_content = """n_estimators integer [10,100] [11]
    min_samples_split integer [2,20] [3] 
    min_samples_leaf real [0,0.499] [0.1]
    max_features categorical {auto,sqrt,log2,None} [auto]
    max_leaf_nodes integer [50,150] [100]
    bootstrap categorical {True,False} [True] 
    """
    '''
    ### pcs for Linear Regression
    pcs_content="""fit_intercept categorical {True,False} [True]
    normalize categorical {True,False} [False]
    copy_X categorical {True,False} [True]
    """
    '''

    opt.set_params(pcs_content)
    while True:
        i = i + 1
        try:
            sug = opt.get_suggestion()
        except NoMoreSuggestionsAvailable:
            break
        print("SUG", sug, sug.__dict__)

        #if i==700 :
        #    break
        '''
        ##/ ** ** ** ** ** ** ** ** estimators for Linear Regression **** ** ** ** ** ** ** ** * /
        fi=sug["fit_intercept"]
        no= normalize=["normalize"]
        cx=sug["copy_X"]

        print("fit_intercept= ",repr(fi),"normalize= ",repr(no),"copy_X= ",repr(cx))

        clf= LinearRegression(fit_intercept=sug["fit_intercept"], normalize=sug["normalize"], copy_X=sug["copy_X"])

        '''
        '''
       # /**************** estimators for MLP *******************/
        flu = sug["hidden_layer_sizes"]
        sol=sug["solver"]
        print("FLU", repr(flu))
        print("sol", repr(sol))
        clf = MLPRegressor(hidden_layer_sizes=sug["hidden_layer_sizes"], solver=sug["solver"],activation=sug["activation"],
                           alpha=0.0001, batch_size='auto', learning_rate=sug["learning_rate"], learning_rate_init=0.001,
                           power_t=0.05, max_iter=200, shuffle=True, random_state=10, tol=0.0001, verbose=False,
                           warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False,
                           validation_fraction=0.05, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
        
        '''

        # /**************** estimators for Random Forrest Rgressor *******************/

        ne = sug["n_estimators"]
        ms = sug["min_samples_split"]
        ml = sug["min_samples_leaf"]
        mln = sug["max_leaf_nodes"]
        bs = sug["bootstrap"]
        oob = "false"

        print("estimator= ", repr(ne), "mean sample split= ",
              repr(ms), "min sample leaf= ", repr(ml), "max leaf nodes= ",
              repr(mln), "bootstrap= ", repr(bs), "oob=", repr(oob), "i= ", i)

        clf = sklearn.ensemble.RandomForestRegressor(
            n_estimators=sug["n_estimators"],
            criterion='mse',
            max_depth=10,
            min_samples_split=sug["min_samples_split"],
            min_samples_leaf=sug["min_samples_leaf"],
            max_features='auto',
            max_leaf_nodes=sug["max_leaf_nodes"],
            bootstrap=sug["bootstrap"],
            oob_score=False,
            n_jobs=1,
            random_state=10,
            verbose=0)
        '''
             activation='relu', solver='adam',
                           alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001,
                           power_t=0.05, max_iter=200, shuffle=True, random_state=10, tol=0.0001, verbose=False,
                           warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False,
                           validation_fraction=0.05, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
            
            
        '''

        clf.fit(X_train, Y_train)
        y_predict = clf.predict(X_validation)
        print('R2 score validation %.5f' % r2_score(Y_validation, y_predict))
        score = r2_score(Y_validation, y_predict)
        sug.report_score("accuracy", score)
Example #30
0
            "type": "integer",
            "min": 1,
            "max": 3
        },
        "M": {
            "type": "integer",
            "min": 5,
            "max": 30
        },
    },
    "spec": {
        "metric": "mAP",
        "objective": "minimize",
    },
}
opt = Optimizer(config, api_key=API_KEY, project_name="MSC-Thesis-PJ")

# In[ ]:

for experiment in opt.get_experiments():
    N = experiment.get_parameter('N')
    M = experiment.get_parameter('M')
    train_generator = create_train_generator(N, M)
    model = create_model()
    history = model.fit_generator(generator=train_generator,
                                  steps_per_epoch=10000,
                                  epochs=5,
                                  verbose=1)
    test_results = test_model(model, create_test_generator(), 0.3)
    experiment.log_metric("mAP", -test_results[2][0])
    K.clear_session()