chosen_edge = chosen_adj_list[chosen_edge] edge_number = chosen_edge[0] edges[i] = edge_number other_vertex = chosen_edge[1] picked[edge_number] = True sample_counts[chosen_vertex] -= 1 sample_counts[other_vertex] -= 1 seen[other_vertex] = True return edges if "NegativeSampleRate" in general_settings: ns = auxilliaries.NegativeSampler( int(general_settings["NegativeSampleRate"]), general_settings["EntityCount"]) ns.set_known_positives(train_triplets) def t_func(x): # horrible hack!!! arr = np.array(x) if not encoder.needs_graph(): return ns.transform(arr) else: if "GraphBatchSize" in general_settings: graph_batch_size = int(general_settings["GraphBatchSize"]) """ n = np.zeros(100) for i in range(100): if i % 20 == 0: print(i)
chosen_edge = chosen_adj_list[chosen_edge] edge_number = chosen_edge[0] edges[i] = edge_number other_vertex = chosen_edge[1] picked[edge_number] = True sample_counts[chosen_vertex] -= 1 sample_counts[other_vertex] -= 1 seen[other_vertex] = True return edges if 'NegativeSampleRate' in general_settings: ns = auxilliaries.NegativeSampler( int(general_settings['NegativeSampleRate']), general_settings['EntityCount']) ns.set_known_positives(train_triplets) def t_func(x): #horrible hack!!! arr = np.array(x) if not encoder.needs_graph(): return ns.transform(arr) else: if 'GraphBatchSize' in general_settings: graph_batch_size = int(general_settings['GraphBatchSize']) ''' n = np.zeros(100) for i in range(100): if i % 20 == 0: print(i)
np.arange(chosen_adj_list.shape[0])) chosen_edge = chosen_adj_list[chosen_edge] edge_number = chosen_edge[0] edges[i] = edge_number other_vertex = chosen_edge[1] picked[edge_number] = True sample_counts[chosen_vertex] -= 1 sample_counts[other_vertex] -= 1 seen[other_vertex] = True return edges if 'NegativeSampleRate' in general_settings: ns = auxilliaries.NegativeSampler( float(general_settings['NegativeSampleRate']), general_settings['EntityCount'], entities.values()) ns.set_positives(train_triplets) def t_func(x): arr = np.array(x) if not encoder.needs_graph(): return ns.transform(arr) else: graph_batch_size = int(general_settings['GraphBatchSize']) graph_batch_ids = sample_edge_neighborhood( arr, graph_batch_size) graph_batch = train_triplets[graph_batch_ids] # Apply dropouts: graph_percentage = float(general_settings['GraphSplitSize'])