def get_dataloader(model_args_list): ''' return dataloader for inference ''' from inference import get_parser from common.helpers import add_ctc_blank from jasper import config from common.dataset import (AudioDataset, FilelistDataset, get_data_loader, SingleAudioDataset) from common.features import FilterbankFeatures parser = get_parser() parser.add_argument('--component', type=str, default="model", choices=["feature-extractor", "model", "decoder"], help='Component to convert') args = parser.parse_args(model_args_list) if args.component == "decoder": return None cfg = config.load(args.model_config) if args.max_duration is not None: cfg['input_val']['audio_dataset']['max_duration'] = args.max_duration cfg['input_val']['filterbank_features'][ 'max_duration'] = args.max_duration if args.pad_to_max_duration: assert cfg['input_train']['audio_dataset']['max_duration'] > 0 cfg['input_train']['audio_dataset']['pad_to_max_duration'] = True symbols = add_ctc_blank(cfg['labels']) dataset_kw, features_kw = config.input(cfg, 'val') dataset = AudioDataset(args.dataset_dir, args.val_manifests, symbols, **dataset_kw) data_loader = get_data_loader(dataset, args.batch_size, multi_gpu=False, shuffle=False, num_workers=4, drop_last=False) feature_proc = None if args.component == "model": feature_proc = FilterbankFeatures(**features_kw) data_loader.collate_fn = FeatureCollate(feature_proc) return data_loader
def main(): parser = get_parser() args = parser.parse_args() log_fpath = args.log_file or str(Path(args.output_dir, 'nvlog_infer.json')) log_fpath = unique_log_fpath(log_fpath) dllogger.init(backends=[JSONStreamBackend(Verbosity.DEFAULT, log_fpath), StdOutBackend(Verbosity.VERBOSE, metric_format=stdout_metric_format)]) [dllogger.log("PARAMETER", {k: v}) for k, v in vars(args).items()] for step in ['DNN', 'data+DNN', 'data']: for c in [0.99, 0.95, 0.9, 0.5]: cs = 'avg' if c == 0.5 else f'{int(100*c)}%' dllogger.metadata(f'{step.lower()}_latency_{c}', {'name': f'{step} latency {cs}', 'format': ':>7.2f', 'unit': 'ms'}) dllogger.metadata( 'eval_wer', {'name': 'WER', 'format': ':>3.2f', 'unit': '%'}) if args.cpu: device = torch.device('cpu') else: assert torch.cuda.is_available() device = torch.device('cuda') torch.backends.cudnn.benchmark = args.cudnn_benchmark if args.seed is not None: torch.manual_seed(args.seed + args.local_rank) np.random.seed(args.seed + args.local_rank) random.seed(args.seed + args.local_rank) # set up distributed training multi_gpu = not args.cpu and int(os.environ.get('WORLD_SIZE', 1)) > 1 if multi_gpu: torch.cuda.set_device(args.local_rank) distrib.init_process_group(backend='nccl', init_method='env://') print_once(f'Inference with {distrib.get_world_size()} GPUs') cfg = config.load(args.model_config) config.apply_config_overrides(cfg, args) symbols = helpers.add_ctc_blank(cfg['labels']) use_dali = args.dali_device in ('cpu', 'gpu') dataset_kw, features_kw = config.input(cfg, 'val') measure_perf = args.steps > 0 # dataset if args.transcribe_wav or args.transcribe_filelist: if use_dali: print("DALI supported only with input .json files; disabling") use_dali = False assert not args.pad_to_max_duration assert not (args.transcribe_wav and args.transcribe_filelist) if args.transcribe_wav: dataset = SingleAudioDataset(args.transcribe_wav) else: dataset = FilelistDataset(args.transcribe_filelist) data_loader = get_data_loader(dataset, batch_size=1, multi_gpu=multi_gpu, shuffle=False, num_workers=0, drop_last=(True if measure_perf else False)) _, features_kw = config.input(cfg, 'val') feat_proc = FilterbankFeatures(**features_kw) elif use_dali: # pad_to_max_duration is not supported by DALI - have simple padders if features_kw['pad_to_max_duration']: feat_proc = BaseFeatures( pad_align=features_kw['pad_align'], pad_to_max_duration=True, max_duration=features_kw['max_duration'], sample_rate=features_kw['sample_rate'], window_size=features_kw['window_size'], window_stride=features_kw['window_stride']) features_kw['pad_to_max_duration'] = False else: feat_proc = None data_loader = DaliDataLoader( gpu_id=args.local_rank or 0, dataset_path=args.dataset_dir, config_data=dataset_kw, config_features=features_kw, json_names=args.val_manifests, batch_size=args.batch_size, pipeline_type=("train" if measure_perf else "val"), # no drop_last device_type=args.dali_device, symbols=symbols) else: dataset = AudioDataset(args.dataset_dir, args.val_manifests, symbols, **dataset_kw) data_loader = get_data_loader(dataset, args.batch_size, multi_gpu=multi_gpu, shuffle=False, num_workers=4, drop_last=False) feat_proc = FilterbankFeatures(**features_kw) model = QuartzNet(encoder_kw=config.encoder(cfg), decoder_kw=config.decoder(cfg, n_classes=len(symbols))) if args.ckpt is not None: print(f'Loading the model from {args.ckpt} ...') checkpoint = torch.load(args.ckpt, map_location="cpu") key = 'ema_state_dict' if args.ema else 'state_dict' state_dict = checkpoint[key] model.load_state_dict(state_dict, strict=True) model.to(device) model.eval() if feat_proc is not None: feat_proc.to(device) feat_proc.eval() if args.amp: model = model.half() if args.torchscript: greedy_decoder = GreedyCTCDecoder() feat_proc, model, greedy_decoder = torchscript_export( data_loader, feat_proc, model, greedy_decoder, args.output_dir, use_amp=args.amp, use_conv_masks=True, model_toml=args.model_toml, device=device, save=args.torchscript_export) if multi_gpu: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank) agg = {'txts': [], 'preds': [], 'logits': []} dur = {'data': [], 'dnn': [], 'data+dnn': []} looped_loader = chain.from_iterable(repeat(data_loader)) greedy_decoder = GreedyCTCDecoder() sync = lambda: torch.cuda.synchronize() if device.type == 'cuda' else None steps = args.steps + args.warmup_steps or len(data_loader) with torch.no_grad(): for it, batch in enumerate(tqdm(looped_loader, initial=1, total=steps)): if use_dali: feats, feat_lens, txt, txt_lens = batch if feat_proc is not None: feats, feat_lens = feat_proc(feats, feat_lens) else: batch = [t.to(device, non_blocking=True) for t in batch] audio, audio_lens, txt, txt_lens = batch feats, feat_lens = feat_proc(audio, audio_lens) sync() t1 = time.perf_counter() if args.amp: feats = feats.half() if model.encoder.use_conv_masks: log_probs, log_prob_lens = model(feats, feat_lens) else: log_probs = model(feats, feat_lens) preds = greedy_decoder(log_probs) sync() t2 = time.perf_counter() # burn-in period; wait for a new loader due to num_workers if it >= 1 and (args.steps == 0 or it >= args.warmup_steps): dur['data'].append(t1 - t0) dur['dnn'].append(t2 - t1) dur['data+dnn'].append(t2 - t0) if txt is not None: agg['txts'] += helpers.gather_transcripts([txt], [txt_lens], symbols) agg['preds'] += helpers.gather_predictions([preds], symbols) agg['logits'].append(log_probs) if it + 1 == steps: break sync() t0 = time.perf_counter() # communicate the results if args.transcribe_wav: for idx, p in enumerate(agg['preds']): print_once(f'Prediction {idx+1: >3}: {p}') elif args.transcribe_filelist: pass elif not multi_gpu or distrib.get_rank() == 0: wer, _ = process_evaluation_epoch(agg) dllogger.log(step=(), data={'eval_wer': 100 * wer}) if args.save_predictions: with open(args.save_predictions, 'w') as f: f.write('\n'.join(agg['preds'])) if args.save_logits: logits = torch.cat(agg['logits'], dim=0).cpu() torch.save(logits, args.save_logits) # report timings if len(dur['data']) >= 20: ratios = [0.9, 0.95, 0.99] for stage in dur: lat = durs_to_percentiles(dur[stage], ratios) for k in [0.99, 0.95, 0.9, 0.5]: kk = str(k).replace('.', '_') dllogger.log(step=(), data={f'{stage.lower()}_latency_{kk}': lat[k]}) else: print_once('Not enough samples to measure latencies.')
def main(): args = parse_args() assert (torch.cuda.is_available()) assert args.prediction_frequency % args.log_frequency == 0 torch.backends.cudnn.benchmark = args.cudnn_benchmark # set up distributed training multi_gpu = int(os.environ.get('WORLD_SIZE', 1)) > 1 if multi_gpu: torch.cuda.set_device(args.local_rank) dist.init_process_group(backend='nccl', init_method='env://') world_size = dist.get_world_size() print_once(f'Distributed training with {world_size} GPUs\n') else: world_size = 1 torch.manual_seed(args.seed + args.local_rank) np.random.seed(args.seed + args.local_rank) random.seed(args.seed + args.local_rank) init_log(args) cfg = config.load(args.model_config) config.apply_config_overrides(cfg, args) symbols = helpers.add_ctc_blank(cfg['labels']) assert args.grad_accumulation_steps >= 1 assert args.batch_size % args.grad_accumulation_steps == 0 batch_size = args.batch_size // args.grad_accumulation_steps print_once('Setting up datasets...') train_dataset_kw, train_features_kw = config.input(cfg, 'train') val_dataset_kw, val_features_kw = config.input(cfg, 'val') use_dali = args.dali_device in ('cpu', 'gpu') if use_dali: assert train_dataset_kw['ignore_offline_speed_perturbation'], \ "DALI doesn't support offline speed perturbation" # pad_to_max_duration is not supported by DALI - have simple padders if train_features_kw['pad_to_max_duration']: train_feat_proc = BaseFeatures( pad_align=train_features_kw['pad_align'], pad_to_max_duration=True, max_duration=train_features_kw['max_duration'], sample_rate=train_features_kw['sample_rate'], window_size=train_features_kw['window_size'], window_stride=train_features_kw['window_stride']) train_features_kw['pad_to_max_duration'] = False else: train_feat_proc = None if val_features_kw['pad_to_max_duration']: val_feat_proc = BaseFeatures( pad_align=val_features_kw['pad_align'], pad_to_max_duration=True, max_duration=val_features_kw['max_duration'], sample_rate=val_features_kw['sample_rate'], window_size=val_features_kw['window_size'], window_stride=val_features_kw['window_stride']) val_features_kw['pad_to_max_duration'] = False else: val_feat_proc = None train_loader = DaliDataLoader( gpu_id=args.local_rank, dataset_path=args.dataset_dir, config_data=train_dataset_kw, config_features=train_features_kw, json_names=args.train_manifests, batch_size=batch_size, grad_accumulation_steps=args.grad_accumulation_steps, pipeline_type="train", device_type=args.dali_device, symbols=symbols) val_loader = DaliDataLoader(gpu_id=args.local_rank, dataset_path=args.dataset_dir, config_data=val_dataset_kw, config_features=val_features_kw, json_names=args.val_manifests, batch_size=batch_size, pipeline_type="val", device_type=args.dali_device, symbols=symbols) else: train_dataset_kw, train_features_kw = config.input(cfg, 'train') train_dataset = AudioDataset(args.dataset_dir, args.train_manifests, symbols, **train_dataset_kw) train_loader = get_data_loader(train_dataset, batch_size, multi_gpu=multi_gpu, shuffle=True, num_workers=4) train_feat_proc = FilterbankFeatures(**train_features_kw) val_dataset_kw, val_features_kw = config.input(cfg, 'val') val_dataset = AudioDataset(args.dataset_dir, args.val_manifests, symbols, **val_dataset_kw) val_loader = get_data_loader(val_dataset, batch_size, multi_gpu=multi_gpu, shuffle=False, num_workers=4, drop_last=False) val_feat_proc = FilterbankFeatures(**val_features_kw) dur = train_dataset.duration / 3600 dur_f = train_dataset.duration_filtered / 3600 nsampl = len(train_dataset) print_once(f'Training samples: {nsampl} ({dur:.1f}h, ' f'filtered {dur_f:.1f}h)') if train_feat_proc is not None: train_feat_proc.cuda() if val_feat_proc is not None: val_feat_proc.cuda() steps_per_epoch = len(train_loader) // args.grad_accumulation_steps # set up the model model = Jasper(encoder_kw=config.encoder(cfg), decoder_kw=config.decoder(cfg, n_classes=len(symbols))) model.cuda() ctc_loss = CTCLossNM(n_classes=len(symbols)) greedy_decoder = GreedyCTCDecoder() print_once(f'Model size: {num_weights(model) / 10**6:.1f}M params\n') # optimization kw = {'lr': args.lr, 'weight_decay': args.weight_decay} if args.optimizer == "novograd": optimizer = Novograd(model.parameters(), **kw) elif args.optimizer == "adamw": optimizer = AdamW(model.parameters(), **kw) else: raise ValueError(f'Invalid optimizer "{args.optimizer}"') scaler = torch.cuda.amp.GradScaler(enabled=args.amp) adjust_lr = lambda step, epoch, optimizer: lr_policy( step, epoch, args.lr, optimizer, steps_per_epoch=steps_per_epoch, warmup_epochs=args.warmup_epochs, hold_epochs=args.hold_epochs, num_epochs=args.epochs, policy=args.lr_policy, min_lr=args.min_lr, exp_gamma=args.lr_exp_gamma) if args.ema > 0: ema_model = copy.deepcopy(model) else: ema_model = None if multi_gpu: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank) if args.pyprof: pyprof.init(enable_function_stack=True) # load checkpoint meta = {'best_wer': 10**6, 'start_epoch': 0} checkpointer = Checkpointer(args.output_dir, 'Jasper', args.keep_milestones) if args.resume: args.ckpt = checkpointer.last_checkpoint() or args.ckpt if args.ckpt is not None: checkpointer.load(args.ckpt, model, ema_model, optimizer, scaler, meta) start_epoch = meta['start_epoch'] best_wer = meta['best_wer'] epoch = 1 step = start_epoch * steps_per_epoch + 1 if args.pyprof: torch.autograd.profiler.emit_nvtx().__enter__() profiler.start() # training loop model.train() # pre-allocate if args.pre_allocate_range is not None: n_feats = train_features_kw['n_filt'] pad_align = train_features_kw['pad_align'] a, b = args.pre_allocate_range for n_frames in range(a, b + pad_align, pad_align): print_once( f'Pre-allocation ({batch_size}x{n_feats}x{n_frames})...') feat = torch.randn(batch_size, n_feats, n_frames, device='cuda') feat_lens = torch.ones(batch_size, device='cuda').fill_(n_frames) txt = torch.randint(high=len(symbols) - 1, size=(batch_size, 100), device='cuda') txt_lens = torch.ones(batch_size, device='cuda').fill_(100) with torch.cuda.amp.autocast(enabled=args.amp): log_probs, enc_lens = model(feat, feat_lens) del feat loss = ctc_loss(log_probs, txt, enc_lens, txt_lens) loss.backward() model.zero_grad() torch.cuda.empty_cache() bmark_stats = BenchmarkStats() for epoch in range(start_epoch + 1, args.epochs + 1): if multi_gpu and not use_dali: train_loader.sampler.set_epoch(epoch) epoch_utts = 0 epoch_loss = 0 accumulated_batches = 0 epoch_start_time = time.time() epoch_eval_time = 0 for batch in train_loader: if accumulated_batches == 0: step_loss = 0 step_utts = 0 step_start_time = time.time() if use_dali: # with DALI, the data is already on GPU feat, feat_lens, txt, txt_lens = batch if train_feat_proc is not None: feat, feat_lens = train_feat_proc(feat, feat_lens) else: batch = [t.cuda(non_blocking=True) for t in batch] audio, audio_lens, txt, txt_lens = batch feat, feat_lens = train_feat_proc(audio, audio_lens) # Use context manager to prevent redundant accumulation of gradients if (multi_gpu and accumulated_batches + 1 < args.grad_accumulation_steps): ctx = model.no_sync() else: ctx = empty_context() with ctx: with torch.cuda.amp.autocast(enabled=args.amp): log_probs, enc_lens = model(feat, feat_lens) loss = ctc_loss(log_probs, txt, enc_lens, txt_lens) loss /= args.grad_accumulation_steps if multi_gpu: reduced_loss = reduce_tensor(loss.data, world_size) else: reduced_loss = loss if torch.isnan(reduced_loss).any(): print_once(f'WARNING: loss is NaN; skipping update') continue else: step_loss += reduced_loss.item() step_utts += batch[0].size(0) * world_size epoch_utts += batch[0].size(0) * world_size accumulated_batches += 1 scaler.scale(loss).backward() if accumulated_batches % args.grad_accumulation_steps == 0: epoch_loss += step_loss scaler.step(optimizer) scaler.update() adjust_lr(step, epoch, optimizer) optimizer.zero_grad() apply_ema(model, ema_model, args.ema) if step % args.log_frequency == 0: preds = greedy_decoder(log_probs) wer, pred_utt, ref = greedy_wer(preds, txt, txt_lens, symbols) if step % args.prediction_frequency == 0: print_once(f' Decoded: {pred_utt[:90]}') print_once(f' Reference: {ref[:90]}') step_time = time.time() - step_start_time log( (epoch, step % steps_per_epoch or steps_per_epoch, steps_per_epoch), step, 'train', { 'loss': step_loss, 'wer': 100.0 * wer, 'throughput': step_utts / step_time, 'took': step_time, 'lrate': optimizer.param_groups[0]['lr'] }) step_start_time = time.time() if step % args.eval_frequency == 0: tik = time.time() wer = evaluate(epoch, step, val_loader, val_feat_proc, symbols, model, ema_model, ctc_loss, greedy_decoder, args.amp, use_dali) if wer < best_wer and epoch >= args.save_best_from: checkpointer.save(model, ema_model, optimizer, scaler, epoch, step, best_wer, is_best=True) best_wer = wer epoch_eval_time += time.time() - tik step += 1 accumulated_batches = 0 # end of step # DALI iterator need to be exhausted; # if not using DALI, simulate drop_last=True with grad accumulation if not use_dali and step > steps_per_epoch * epoch: break epoch_time = time.time() - epoch_start_time epoch_loss /= steps_per_epoch log( (epoch, ), None, 'train_avg', { 'throughput': epoch_utts / epoch_time, 'took': epoch_time, 'loss': epoch_loss }) bmark_stats.update(epoch_utts, epoch_time, epoch_loss) if epoch % args.save_frequency == 0 or epoch in args.keep_milestones: checkpointer.save(model, ema_model, optimizer, scaler, epoch, step, best_wer) if 0 < args.epochs_this_job <= epoch - start_epoch: print_once(f'Finished after {args.epochs_this_job} epochs.') break # end of epoch if args.pyprof: profiler.stop() torch.autograd.profiler.emit_nvtx().__exit__(None, None, None) log((), None, 'train_avg', bmark_stats.get(args.benchmark_epochs_num)) if epoch == args.epochs: evaluate(epoch, step, val_loader, val_feat_proc, symbols, model, ema_model, ctc_loss, greedy_decoder, args.amp, use_dali) checkpointer.save(model, ema_model, optimizer, scaler, epoch, step, best_wer) flush_log()