Example #1
0
                            map_location=lambda storage, loc: storage)
    print('This model was trained for {} epochs'.format(checkpoint['epoch']))
    model_pos_train.load_state_dict(checkpoint['model_pos'])
    model_pos.load_state_dict(checkpoint['model_pos'])

test_generator = UnchunkedGenerator(cameras_valid,
                                    poses_valid,
                                    poses_valid_2d,
                                    pad=pad,
                                    causal_shift=causal_shift,
                                    augment=False,
                                    kps_left=kps_left,
                                    kps_right=kps_right,
                                    joints_left=joints_left,
                                    joints_right=joints_right)
print('INFO: Testing on {} frames'.format(test_generator.num_frames()))

if not args.evaluate:
    cameras_train, poses_train, poses_train_2d = fetch(subjects_train,
                                                       action_filter,
                                                       subset=args.subset)

    lr = args.learning_rate
    if semi_supervised:
        cameras_semi, _, poses_semi_2d = fetch(subjects_semi,
                                               action_filter,
                                               parse_3d_poses=False)

        if not args.disable_optimizations and not args.dense and args.stride == 1:
            # Use optimized model for single-frame predictions
            model_traj_train = TemporalModelOptimized1f(
Example #2
0
if torch.cuda.is_available():
    model_pos = model_pos.cuda()
#    model_pos_train = model_pos_train.cuda()
    
if args.resume or args.evaluate:
    chk_filename = os.path.join(args.checkpoint, args.resume if args.resume else args.evaluate)
    print('Loading checkpoint', chk_filename)
    checkpoint = torch.load(chk_filename, map_location=lambda storage, loc: storage)
    print('This model was trained for {} epochs'.format(checkpoint['epoch']))
#    model_pos_train.load_state_dict(checkpoint['model_pos'])
    model_pos.load_state_dict(checkpoint['model_pos'])
    
test_generator = UnchunkedGenerator(cameras_valid, poses_valid, poses_valid_2d,
                                    pad=pad, causal_shift=causal_shift, augment=False,
                                    kps_left=kps_left, kps_right=kps_right, joints_left=joints_left, joints_right=joints_right)
print('INFO: Testing on {} frames'.format(test_generator.num_frames()))


def evaluate(test_generator, action=None, return_predictions=False):
    epoch_loss_3d_pos = 0
    epoch_loss_3d_pos_procrustes = 0
    epoch_loss_3d_pos_scale = 0
    epoch_loss_3d_vel = 0
    with torch.no_grad():
        model_pos.eval()
        N = 0
        for _, batch, batch_2d in test_generator.next_epoch():
            inputs_2d = torch.from_numpy(batch_2d.astype('float32'))
            if torch.cuda.is_available():
                inputs_2d = inputs_2d.cuda()
Example #3
0
    kps_left and kps_right -- list of left/right 2D keypoints if flipping is enabled
    joints_left and joints_right -- list of left/right 3D joints if flipping is enabled'''
test_generator = UnchunkedGenerator(cameras_valid,
                                    poses_valid,
                                    poses_valid_2d,
                                    pad=pad,
                                    causal_shift=causal_shift,
                                    augment=False,
                                    kps_left=kps_left,
                                    kps_right=kps_right,
                                    joints_left=joints_left,
                                    joints_right=joints_right)
#THIS GENERATOR ONLY USED FOR TRAINING

#Log how many frames we're running the model on
print('INFO: Testing on {} frames'.format(test_generator.num_frames()))


#Evaluate
def evaluate(test_generator,
             action=None,
             return_predictions=False,
             use_trajectory_model=False):
    print("evaluate() called!")

    epoch_loss_3d_pos = 0
    epoch_loss_3d_pos_procrustes = 0
    epoch_loss_3d_pos_scale = 0
    epoch_loss_3d_vel = 0

    with torch.no_grad():
Example #4
0
    model_pos = model_pos.cuda()
    model_pos_train = model_pos_train.cuda()

if args.resume or args.evaluate:
    chk_filename = os.path.join(args.checkpoint, args.resume if args.resume else args.evaluate)
    print('Loading checkpoint', chk_filename)
    checkpoint = torch.load(chk_filename, map_location=lambda storage, loc: storage)
    print('This model was trained for {} epochs'.format(checkpoint['epoch']))
    model_pos_train.load_state_dict(checkpoint['model_pos'])
    model_pos.load_state_dict(checkpoint['model_pos'])

test_generator = UnchunkedGenerator(cameras_valid, poses_valid, poses_valid_2d,
                                    pad=pad, causal_shift=causal_shift, augment=False,
                                    kps_left=kps_left, kps_right=kps_right, joints_left=joints_left,
                                    joints_right=joints_right)
print('INFO: Testing on {} frames'.format(test_generator.num_frames()))

if not args.evaluate:
    cameras_train, poses_train, poses_train_2d = fetch(subjects_train, action_filter, subset=args.subset)

    lr = args.learning_rate
    if semi_supervised:
        cameras_semi, _, poses_semi_2d = fetch(subjects_semi, action_filter, parse_3d_poses=False)

        if not args.disable_optimizations and not args.dense and args.stride == 1:
            # Use optimized model for single-frame predictions
            model_traj_train = TemporalModelOptimized1f(poses_valid_2d[0].shape[-2], poses_valid_2d[0].shape[-1], 1,
                                                        filter_widths=filter_widths, causal=args.causal,
                                                        dropout=args.dropout, channels=args.channels)
        else:
            # When incompatible settings are detected (stride > 1, dense filters, or disabled optimization) fall back
Example #5
0
            name = k[7:]  # remove "module"
            new_state_dict[name] = v
        model_pos_train.load_state_dict(new_state_dict)
        model_pos.load_state_dict(new_state_dict)

test_generator = UnchunkedGenerator(cameras_valid,
                                    poses_valid,
                                    poses_valid_2d,
                                    pad=pad,
                                    causal_shift=causal_shift,
                                    augment=False,
                                    kps_left=kps_left,
                                    kps_right=kps_right,
                                    joints_left=joints_left,
                                    joints_right=joints_right)
print("INFO: Testing on {} frames".format(test_generator.num_frames()))

# geometric constrain
edge_children = np.array([1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16])
edge_parent = np.array([0, 1, 2, 0, 4, 5, 8, 11, 12, 8, 14, 15])
edge_matrix = np.zeros((len(edge_children), 17), dtype=np.float32)
for i in range(len(edge_children)):
    edge_matrix[i][edge_children[i]] = 1.0
    edge_matrix[i][edge_parent[i]] = -1.0
edge_matrix = torch.from_numpy(edge_matrix)

bone_children = np.array([3, 4, 5, 9, 10, 11])
bone_parent = np.array([0, 1, 2, 6, 7, 8])
bone_matrix = np.zeros((len(bone_children), 12), dtype=np.float32)
for i in range(len(bone_children)):
    bone_matrix[i][bone_children[i]] = 1.0
Example #6
0
def analyze_frame(h, frame):

    boxes, keypoints = infer.inference_on_frame(h['predictor'], frame)

    # step 4: prepare data.
    # take 2d keypoints, that's it
    # first element is empty array, second is our actual frame data, a 3d numpy array with first dimension 1, second and third being the 17 joints of 3 doubles each.
    kp = keypoints[1][0][:2, :].T  # extract (x, y) just like in prepare_data_2d_custom code

    # what to do if kp is NaN or missing data or something?
    # I guess just ignore it

    # they do this  at the end of step4. but we keep it simple, and take the data from step2 directly into a variable.
    #     output[canonical_name]['custom'] = [data[0]['keypoints'].astype('float32')]
    #output_custom_canonical_bullshit = kp.astype('float32')

    # this is what happens at  the end of step4. which is a file that is loaded in the beginning of step 5.
    #     np.savez_compressed(os.path.join(args.dataoutputdir, output_prefix_2d + args.output), positions_2d=output, metadata=metadata)

    # this is the bullshit they do in the original script.
    # confusingly, keypoints is actually just data, until it is set to keypoints[positions_2d]
    # keypoints = np.load('data/data_2d_' + args.dataset + '_' + args.keypoints + '.npz', allow_pickle=True)

    # step 5: ..... all the other shit
    # starting to copy stuff over from run.py

    # extract dataset from the init dictionary
    dataset = h['dataset']
    keypoints_metadata = h['keypoints_metadata']
    keypoints_symmetry = h['keypoints_symmetry']

    kps_left = h['kps_left']
    kps_right = h['kps_right']
    joints_left = h['joints_left']
    joints_right = h['joints_right']

    # normalize
    for i in range(len(kp)):
        koord = kp[i]
        kp[i] = normalize_screen_coordinates(koord, h['frame_metadata']['w'], h['frame_metadata']['h'])
    #for kps in enumerate(keypoints):
    #    kps[..., :2] = normalize_screen_coordinates(kps[..., :2], frame_metadata['w'], frame_metadata['h'])

    # this is taken from the args.architecture and run.py and just hardcoded, skipping a lot of nonsense
    filter_widths = [int(x) for x in "3,3,3,3,3".split(',')]
    skeleton_num_joints = dataset.skeleton().num_joints()
    #skeleton_num_joints = 17

    causal = True
    dropout = 0.25
    channels = 1024
    dense = False

    model_pos_train = TemporalModelOptimized1f(kp.shape[-2], kp.shape[-1], skeleton_num_joints,
                                               filter_widths=filter_widths, causal=causal, dropout=dropout,
                                               channels=channels)
    model_pos = TemporalModel(kp.shape[-2], kp.shape[-1], skeleton_num_joints,
                                         filter_widths=filter_widths, causal=causal, dropout=dropout,
                                         channels=channels, dense=dense)

    receptive_field = model_pos.receptive_field()
    print('INFO: Receptive field: {} frames'.format(receptive_field))
    pad = (receptive_field - 1) // 2  # Padding on each side
    #if args.causal:
    #    print('INFO: Using causal convolutions')
    #    causal_shift = pad
    #else:
    #    causal_shift = 0
    causal_shift = pad

    model_params = 0
    for parameter in model_pos.parameters():
        model_params += parameter.numel()
    print('INFO: Trainable parameter count:', model_params)

    if torch.cuda.is_available():
        model_pos = model_pos.cuda()
        model_pos_train = model_pos_train.cuda()

    #if args.resume or args.evaluate:
    if True:
        chk_filename = "checkpoint/pretrained_h36m_detectron_coco.bin"
        print('Loading checkpoint', chk_filename)
        checkpoint = torch.load(chk_filename, map_location=lambda storage, loc: storage)
        print('This model was trained for {} epochs'.format(checkpoint['epoch']))
        model_pos_train.load_state_dict(checkpoint['model_pos'])
        model_pos.load_state_dict(checkpoint['model_pos'])

        # false in our particular case... we might benefit from getting rid of model_traj,
        # unless it's super fast then we should just keep it in case we ever upgrade
        if 'model_traj' in checkpoint:
            # Load trajectory model if it contained in the checkpoint (e.g. for inference in the wild)
            model_traj = TemporalModel(kp.shape[-2], kp.shape[-1], 1,
                                filter_widths=filter_widths, causal=causal, dropout=dropout, channels=channels,
                                dense=dense)
            if torch.cuda.is_available():
                model_traj = model_traj.cuda()
            model_traj.load_state_dict(checkpoint['model_traj'])
        else:
            model_traj = None

    test_generator = UnchunkedGenerator(None, None, kp,
                                        pad=pad, causal_shift=causal_shift, augment=False,
                                        kps_left=kps_left, kps_right=kps_right,
                                        joints_left=joints_left, joints_right=joints_right)
    print('INFO: Testing on {} frames'.format(test_generator.num_frames()))

    # Evaluate
    def evaluate(eval_generator, action=None, return_predictions=False, use_trajectory_model=False):
        epoch_loss_3d_pos = 0
        epoch_loss_3d_pos_procrustes = 0
        epoch_loss_3d_pos_scale = 0
        epoch_loss_3d_vel = 0
        with torch.no_grad():
            if not use_trajectory_model:
                model_pos.eval()
            else:
                model_traj.eval()
            N = 0
            for _, batch, batch_2d in eval_generator.next_epoch():
                inputs_2d = torch.from_numpy(batch_2d.astype('float32'))
                if torch.cuda.is_available():
                    inputs_2d = inputs_2d.cuda()

                # Positional model
                if not use_trajectory_model:
                    predicted_3d_pos = model_pos(inputs_2d)
                else:
                    predicted_3d_pos = model_traj(inputs_2d)

                # Test-time augmentation (if enabled)
                if eval_generator.augment_enabled():
                    # Undo flipping and take average with non-flipped version
                    predicted_3d_pos[1, :, :, 0] *= -1
                    if not use_trajectory_model:
                        predicted_3d_pos[1, :, joints_left + joints_right] = predicted_3d_pos[1, :, joints_right + joints_left]
                    predicted_3d_pos = torch.mean(predicted_3d_pos, dim=0, keepdim=True)

                if return_predictions:
                    return predicted_3d_pos.squeeze(0).cpu().numpy()

                inputs_3d = torch.from_numpy(batch.astype('float32'))
                if torch.cuda.is_available():
                    inputs_3d = inputs_3d.cuda()
                inputs_3d[:, :, 0] = 0
                if eval_generator.augment_enabled():
                    inputs_3d = inputs_3d[:1]

                error = mpjpe(predicted_3d_pos, inputs_3d)
                epoch_loss_3d_pos_scale += inputs_3d.shape[0]*inputs_3d.shape[1] * n_mpjpe(predicted_3d_pos, inputs_3d).item()

                epoch_loss_3d_pos += inputs_3d.shape[0]*inputs_3d.shape[1] * error.item()
                N += inputs_3d.shape[0] * inputs_3d.shape[1]

                inputs = inputs_3d.cpu().numpy().reshape(-1, inputs_3d.shape[-2], inputs_3d.shape[-1])
                predicted_3d_pos = predicted_3d_pos.cpu().numpy().reshape(-1, inputs_3d.shape[-2], inputs_3d.shape[-1])

                epoch_loss_3d_pos_procrustes += inputs_3d.shape[0]*inputs_3d.shape[1] * p_mpjpe(predicted_3d_pos, inputs)

                # Compute velocity error
                epoch_loss_3d_vel += inputs_3d.shape[0]*inputs_3d.shape[1] * mean_velocity_error(predicted_3d_pos, inputs)

        if action is None:
            print('----------')
        else:
            print('----'+action+'----')
        e1 = (epoch_loss_3d_pos / N)*1000
        e2 = (epoch_loss_3d_pos_procrustes / N)*1000
        e3 = (epoch_loss_3d_pos_scale / N)*1000
        ev = (epoch_loss_3d_vel / N)*1000
        print('Test time augmentation:', eval_generator.augment_enabled())
        print('Protocol #1 Error (MPJPE):', e1, 'mm')
        print('Protocol #2 Error (P-MPJPE):', e2, 'mm')
        print('Protocol #3 Error (N-MPJPE):', e3, 'mm')
        print('Velocity Error (MPJVE):', ev, 'mm')
        print('----------')

        return e1, e2, e3, ev

    image_keypoints2d = kp
    gen = UnchunkedGenerator(None, None, [[image_keypoints2d]],
                             pad=pad, causal_shift=causal_shift, augment=False,
                             kps_left=kps_left, kps_right=kps_right, joints_left=joints_left, joints_right=joints_right)
    prediction = evaluate(gen, return_predictions=True)

    # here is the data format
    # public enum VideoPose3dJointOrder
    # {
    #     HIP = 0,
    #     R_HIP = 1,
    #     R_KNEE = 2,
    #     R_FOOT = 3,
    #     L_HIP = 4,
    #     L_KNEE = 5,
    #     L_FOOT = 6,
    #     SPINE = 7,
    #     THORAX = 8,
    #     NOSE = 9,
    #     HEAD = 10,
    #     L_SHOULDER = 11,
    #     L_ELBOW = 12,
    #     L_WRIST = 13,
    #     R_SHOULDER = 14,
    #     R_ELBOW = 15,
    #     R_WRIST = 16
    # }

    # this bugs out. dunno what the hell they were trying to do.
    # anyway we can fix it by just getting width/height some other way.

    # Invert camera transformation
    cam = dataset.cameras()

    width = cam['frame'][0]['res_w']
    height = cam['frame'][0]['res_h']

    image_keypoints2d = image_coordinates(image_keypoints2d[..., :2], w=width, h=height)

    viz_camera = 0

    # If the ground truth is not available, take the camera extrinsic params from a random subject.
    # They are almost the same, and anyway, we only need this for visualization purposes.
    for subject in dataset.cameras():
        if 'orientation' in dataset.cameras()[subject][viz_camera]:
            rot = dataset.cameras()[subject][viz_camera]['orientation']
            break
    prediction = camera_to_world(prediction, R=rot, t=0)
    # We don't have the trajectory, but at least we can rebase the height
    prediction[:, :, 2] -= np.min(prediction[:, :, 2])

    # because algo was meant for a list of frames, we take the first frame (our only frame)
    prediction3d = prediction[0]

    return prediction3d, image_keypoints2d

    # do we want to visualize? this code used to write to json and create a video for visualization
    #if args.viz_output is not None:
    if True:

        anim_output = {'Reconstruction': prediction}

        # format the data in the same format as mediapipe, so we can load it in unity with the same script
        # we need a list (frames) of lists of 3d landmarks.
        unity_landmarks = prediction.tolist()

        # how to send data? or display it?
        # maybe draw it on the webcam feed....?!?!?!


        #with open(args.output_json, "w") as json_file:
        #    json.dump(unity_landmarks, json_file)

        #if args.rendervideo == "yes":
        #    from common.visualization import render_animation
        #    render_animation(input_keypoints, keypoints_metadata, anim_output,
        #                     dataset.skeleton(), dataset.fps(), args.viz_bitrate, cam['azimuth'], args.viz_output,
        #                     limit=args.viz_limit, downsample=args.viz_downsample, size=args.viz_size,
        #                     input_video_path=args.viz_video, viewport=(cam['res_w'], cam['res_h']),
        #                     input_video_skip=args.viz_skip)

    we_re_done_here = 1
Example #7
0
def the_main_kaboose(args):
    print(args)

    try:
        # Create checkpoint directory if it does not exist
        os.makedirs(args.checkpoint)
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise RuntimeError('Unable to create checkpoint directory:',
                               args.checkpoint)

    print('Loading dataset...')
    dataset_path = 'data/data_3d_' + args.dataset + '.npz'
    if args.dataset == 'h36m':
        from common.h36m_dataset import Human36mDataset
        dataset = Human36mDataset(dataset_path)
    elif args.dataset.startswith('humaneva'):
        from common.humaneva_dataset import HumanEvaDataset
        dataset = HumanEvaDataset(dataset_path)
    elif args.dataset.startswith('custom'):
        from common.custom_dataset import CustomDataset
        dataset = CustomDataset('data/data_2d_' + args.dataset + '_' +
                                args.keypoints + '.npz')
    else:
        raise KeyError('Invalid dataset')

    print('Preparing data...')
    for subject in dataset.subjects():
        for action in dataset[subject].keys():
            anim = dataset[subject][action]

            # this only works when training.
            if 'positions' in anim:
                positions_3d = []
                for cam in anim['cameras']:
                    pos_3d = world_to_camera(anim['positions'],
                                             R=cam['orientation'],
                                             t=cam['translation'])
                    pos_3d[:,
                           1:] -= pos_3d[:, :
                                         1]  # Remove global offset, but keep trajectory in first position
                    positions_3d.append(pos_3d)
                anim['positions_3d'] = positions_3d

    print('Loading 2D detections...')
    keypoints = np.load('data/data_2d_' + args.dataset + '_' + args.keypoints +
                        '.npz',
                        allow_pickle=True)
    keypoints_metadata = keypoints['metadata'].item()
    keypoints_symmetry = keypoints_metadata['keypoints_symmetry']
    kps_left, kps_right = list(keypoints_symmetry[0]), list(
        keypoints_symmetry[1])
    joints_left, joints_right = list(dataset.skeleton().joints_left()), list(
        dataset.skeleton().joints_right())
    keypoints = keypoints['positions_2d'].item()

    # THIS IS ABOUT TRAINING. ignore pls.
    for subject in dataset.subjects():
        assert subject in keypoints, 'Subject {} is missing from the 2D detections dataset'.format(
            subject)
        for action in dataset[subject].keys():
            assert action in keypoints[
                subject], 'Action {} of subject {} is missing from the 2D detections dataset'.format(
                    action, subject)
            if 'positions_3d' not in dataset[subject][action]:
                continue

            for cam_idx in range(len(keypoints[subject][action])):

                # We check for >= instead of == because some videos in H3.6M contain extra frames
                mocap_length = dataset[subject][action]['positions_3d'][
                    cam_idx].shape[0]
                assert keypoints[subject][action][cam_idx].shape[
                    0] >= mocap_length

                if keypoints[subject][action][cam_idx].shape[0] > mocap_length:
                    # Shorten sequence
                    keypoints[subject][action][cam_idx] = keypoints[subject][
                        action][cam_idx][:mocap_length]

            assert len(keypoints[subject][action]) == len(
                dataset[subject][action]['positions_3d'])

    # normalize camera frame?
    for subject in keypoints.keys():
        for action in keypoints[subject]:
            for cam_idx, kps in enumerate(keypoints[subject][action]):
                # Normalize camera frame
                cam = dataset.cameras()[subject][cam_idx]
                kps[..., :2] = normalize_screen_coordinates(kps[..., :2],
                                                            w=cam['res_w'],
                                                            h=cam['res_h'])
                keypoints[subject][action][cam_idx] = kps

    subjects_train = args.subjects_train.split(',')
    subjects_semi = [] if not args.subjects_unlabeled else args.subjects_unlabeled.split(
        ',')
    if not args.render:
        subjects_test = args.subjects_test.split(',')
    else:
        subjects_test = [args.viz_subject]

    semi_supervised = len(subjects_semi) > 0
    if semi_supervised and not dataset.supports_semi_supervised():
        raise RuntimeError(
            'Semi-supervised training is not implemented for this dataset')

    def fetch(subjects, action_filter=None, subset=1, parse_3d_poses=True):
        out_poses_3d = []
        out_poses_2d = []
        out_camera_params = []
        for subject in subjects:
            print("gonna check actions for subject " + subject)

        for subject in subjects:
            for action in keypoints[subject].keys():
                if action_filter is not None:
                    found = False
                    for a in action_filter:
                        if action.startswith(a):
                            found = True
                            break
                    if not found:
                        continue

                poses_2d = keypoints[subject][action]
                for i in range(len(poses_2d)):  # Iterate across cameras
                    out_poses_2d.append(poses_2d[i])

                if subject in dataset.cameras():
                    cams = dataset.cameras()[subject]
                    assert len(cams) == len(poses_2d), 'Camera count mismatch'
                    for cam in cams:
                        if 'intrinsic' in cam:
                            out_camera_params.append(cam['intrinsic'])

                if parse_3d_poses and 'positions_3d' in dataset[subject][
                        action]:
                    poses_3d = dataset[subject][action]['positions_3d']
                    assert len(poses_3d) == len(
                        poses_2d), 'Camera count mismatch'
                    for i in range(len(poses_3d)):  # Iterate across cameras
                        out_poses_3d.append(poses_3d[i])

        if len(out_camera_params) == 0:
            out_camera_params = None
        if len(out_poses_3d) == 0:
            out_poses_3d = None

        stride = args.downsample
        if subset < 1:
            for i in range(len(out_poses_2d)):
                n_frames = int(
                    round(len(out_poses_2d[i]) // stride * subset) * stride)
                start = deterministic_random(
                    0,
                    len(out_poses_2d[i]) - n_frames + 1,
                    str(len(out_poses_2d[i])))
                out_poses_2d[i] = out_poses_2d[i][start:start +
                                                  n_frames:stride]
                if out_poses_3d is not None:
                    out_poses_3d[i] = out_poses_3d[i][start:start +
                                                      n_frames:stride]
        elif stride > 1:
            # Downsample as requested
            for i in range(len(out_poses_2d)):
                out_poses_2d[i] = out_poses_2d[i][::stride]
                if out_poses_3d is not None:
                    out_poses_3d[i] = out_poses_3d[i][::stride]

        return out_camera_params, out_poses_3d, out_poses_2d

    action_filter = None if args.actions == '*' else args.actions.split(',')
    if action_filter is not None:
        print('Selected actions:', action_filter)

    # when you run inference, this returns None, None, and the keypoints array renamed as poses_valid_2d
    cameras_valid, poses_valid, poses_valid_2d = fetch(subjects_test,
                                                       action_filter)

    filter_widths = [int(x) for x in args.architecture.split(',')]
    if not args.disable_optimizations and not args.dense and args.stride == 1:
        # Use optimized model for single-frame predictions
        shape_2 = poses_valid_2d[0].shape[-2]
        shape_1 = poses_valid_2d[0].shape[-1]
        numJoints = dataset.skeleton().num_joints()
        model_pos_train = TemporalModelOptimized1f(shape_2,
                                                   shape_1,
                                                   numJoints,
                                                   filter_widths=filter_widths,
                                                   causal=args.causal,
                                                   dropout=args.dropout,
                                                   channels=args.channels)
    else:
        # When incompatible settings are detected (stride > 1, dense filters, or disabled optimization) fall back to normal model
        model_pos_train = TemporalModel(poses_valid_2d[0].shape[-2],
                                        poses_valid_2d[0].shape[-1],
                                        dataset.skeleton().num_joints(),
                                        filter_widths=filter_widths,
                                        causal=args.causal,
                                        dropout=args.dropout,
                                        channels=args.channels,
                                        dense=args.dense)

    model_pos = TemporalModel(poses_valid_2d[0].shape[-2],
                              poses_valid_2d[0].shape[-1],
                              dataset.skeleton().num_joints(),
                              filter_widths=filter_widths,
                              causal=args.causal,
                              dropout=args.dropout,
                              channels=args.channels,
                              dense=args.dense)

    receptive_field = model_pos.receptive_field()
    print('INFO: Receptive field: {} frames'.format(receptive_field))
    pad = (receptive_field - 1) // 2  # Padding on each side
    if args.causal:
        print('INFO: Using causal convolutions')
        causal_shift = pad
    else:
        causal_shift = 0

    model_params = 0
    for parameter in model_pos.parameters():
        model_params += parameter.numel()
    print('INFO: Trainable parameter count:', model_params)

    if torch.cuda.is_available():
        model_pos = model_pos.cuda()
        model_pos_train = model_pos_train.cuda()

    if args.resume or args.evaluate:
        chk_filename = os.path.join(
            args.checkpoint, args.resume if args.resume else args.evaluate)
        print('Loading checkpoint', chk_filename)
        checkpoint = torch.load(chk_filename,
                                map_location=lambda storage, loc: storage)
        print('This model was trained for {} epochs'.format(
            checkpoint['epoch']))
        model_pos_train.load_state_dict(checkpoint['model_pos'])
        model_pos.load_state_dict(checkpoint['model_pos'])

        if args.evaluate and 'model_traj' in checkpoint:
            # Load trajectory model if it contained in the checkpoint (e.g. for inference in the wild)
            model_traj = TemporalModel(poses_valid_2d[0].shape[-2],
                                       poses_valid_2d[0].shape[-1],
                                       1,
                                       filter_widths=filter_widths,
                                       causal=args.causal,
                                       dropout=args.dropout,
                                       channels=args.channels,
                                       dense=args.dense)
            if torch.cuda.is_available():
                model_traj = model_traj.cuda()
            model_traj.load_state_dict(checkpoint['model_traj'])
        else:
            model_traj = None

    test_generator = UnchunkedGenerator(cameras_valid,
                                        poses_valid,
                                        poses_valid_2d,
                                        pad=pad,
                                        causal_shift=causal_shift,
                                        augment=False,
                                        kps_left=kps_left,
                                        kps_right=kps_right,
                                        joints_left=joints_left,
                                        joints_right=joints_right)
    print('INFO: Testing on {} frames'.format(test_generator.num_frames()))

    # Evaluate
    def evaluate(eval_generator,
                 action=None,
                 return_predictions=False,
                 use_trajectory_model=False):
        epoch_loss_3d_pos = 0
        epoch_loss_3d_pos_procrustes = 0
        epoch_loss_3d_pos_scale = 0
        epoch_loss_3d_vel = 0
        with torch.no_grad():
            if not use_trajectory_model:
                model_pos.eval()
            else:
                model_traj.eval()
            N = 0
            for _, batch, batch_2d in eval_generator.next_epoch():
                inputs_2d = torch.from_numpy(batch_2d.astype('float32'))
                if torch.cuda.is_available():
                    inputs_2d = inputs_2d.cuda()

                # Positional model
                if not use_trajectory_model:
                    predicted_3d_pos = model_pos(inputs_2d)
                else:
                    predicted_3d_pos = model_traj(inputs_2d)

                # Test-time augmentation (if enabled)
                if eval_generator.augment_enabled():
                    # Undo flipping and take average with non-flipped version
                    predicted_3d_pos[1, :, :, 0] *= -1
                    if not use_trajectory_model:
                        predicted_3d_pos[1, :, joints_left +
                                         joints_right] = predicted_3d_pos[
                                             1, :, joints_right + joints_left]
                    predicted_3d_pos = torch.mean(predicted_3d_pos,
                                                  dim=0,
                                                  keepdim=True)

                if return_predictions:
                    return predicted_3d_pos.squeeze(0).cpu().numpy()

                inputs_3d = torch.from_numpy(batch.astype('float32'))
                if torch.cuda.is_available():
                    inputs_3d = inputs_3d.cuda()
                inputs_3d[:, :, 0] = 0
                if eval_generator.augment_enabled():
                    inputs_3d = inputs_3d[:1]

                error = mpjpe(predicted_3d_pos, inputs_3d)
                epoch_loss_3d_pos_scale += inputs_3d.shape[
                    0] * inputs_3d.shape[1] * n_mpjpe(predicted_3d_pos,
                                                      inputs_3d).item()

                epoch_loss_3d_pos += inputs_3d.shape[0] * inputs_3d.shape[
                    1] * error.item()
                N += inputs_3d.shape[0] * inputs_3d.shape[1]

                inputs = inputs_3d.cpu().numpy().reshape(
                    -1, inputs_3d.shape[-2], inputs_3d.shape[-1])
                predicted_3d_pos = predicted_3d_pos.cpu().numpy().reshape(
                    -1, inputs_3d.shape[-2], inputs_3d.shape[-1])

                epoch_loss_3d_pos_procrustes += inputs_3d.shape[
                    0] * inputs_3d.shape[1] * p_mpjpe(predicted_3d_pos, inputs)

                # Compute velocity error
                epoch_loss_3d_vel += inputs_3d.shape[0] * inputs_3d.shape[
                    1] * mean_velocity_error(predicted_3d_pos, inputs)

        if action is None:
            print('----------')
        else:
            print('----' + action + '----')
        e1 = (epoch_loss_3d_pos / N) * 1000
        e2 = (epoch_loss_3d_pos_procrustes / N) * 1000
        e3 = (epoch_loss_3d_pos_scale / N) * 1000
        ev = (epoch_loss_3d_vel / N) * 1000
        print('Test time augmentation:', eval_generator.augment_enabled())
        print('Protocol #1 Error (MPJPE):', e1, 'mm')
        print('Protocol #2 Error (P-MPJPE):', e2, 'mm')
        print('Protocol #3 Error (N-MPJPE):', e3, 'mm')
        print('Velocity Error (MPJVE):', ev, 'mm')
        print('----------')

        return e1, e2, e3, ev

    if args.render:
        print('Rendering...')

        input_keypoints = keypoints[args.viz_subject][args.viz_action][
            args.viz_camera].copy()
        ground_truth = None
        if args.viz_subject in dataset.subjects(
        ) and args.viz_action in dataset[args.viz_subject]:
            if 'positions_3d' in dataset[args.viz_subject][args.viz_action]:
                ground_truth = dataset[args.viz_subject][
                    args.viz_action]['positions_3d'][args.viz_camera].copy()
        if ground_truth is None:
            print(
                'INFO: this action is unlabeled. Ground truth will not be rendered.'
            )

        gen = UnchunkedGenerator(None,
                                 None, [input_keypoints],
                                 pad=pad,
                                 causal_shift=causal_shift,
                                 augment=args.test_time_augmentation,
                                 kps_left=kps_left,
                                 kps_right=kps_right,
                                 joints_left=joints_left,
                                 joints_right=joints_right)
        prediction = evaluate(gen, return_predictions=True)
        if model_traj is not None and ground_truth is None:
            prediction_traj = evaluate(gen,
                                       return_predictions=True,
                                       use_trajectory_model=True)
            prediction += prediction_traj

        if args.viz_export is not None:
            print('Exporting joint positions to', args.viz_export)
            # Predictions are in camera space
            np.save(args.viz_export, prediction)

        if args.viz_output is not None:
            if ground_truth is not None:
                # Reapply trajectory
                trajectory = ground_truth[:, :1]
                ground_truth[:, 1:] += trajectory
                prediction += trajectory

            # Invert camera transformation
            cam = dataset.cameras()[args.viz_subject][args.viz_camera]
            if ground_truth is not None:
                prediction = camera_to_world(prediction,
                                             R=cam['orientation'],
                                             t=cam['translation'])
                ground_truth = camera_to_world(ground_truth,
                                               R=cam['orientation'],
                                               t=cam['translation'])
            else:
                # If the ground truth is not available, take the camera extrinsic params from a random subject.
                # They are almost the same, and anyway, we only need this for visualization purposes.
                for subject in dataset.cameras():
                    if 'orientation' in dataset.cameras()[subject][
                            args.viz_camera]:
                        rot = dataset.cameras()[subject][
                            args.viz_camera]['orientation']
                        break
                prediction = camera_to_world(prediction, R=rot, t=0)
                # We don't have the trajectory, but at least we can rebase the height
                prediction[:, :, 2] -= np.min(prediction[:, :, 2])

            anim_output = {'Reconstruction': prediction}
            if ground_truth is not None and not args.viz_no_ground_truth:
                anim_output['Ground truth'] = ground_truth

            input_keypoints = image_coordinates(input_keypoints[..., :2],
                                                w=cam['res_w'],
                                                h=cam['res_h'])

            print("Writing to json")

            import json
            # format the data in the same format as mediapipe, so we can load it in unity with the same script
            # we need a list (frames) of lists of 3d landmarks.
            # but prediction[] only has 17 landmarks, and we need 25 in our unity script
            unity_landmarks = prediction.tolist()

            with open(args.output_json, "w") as json_file:
                json.dump(unity_landmarks, json_file)

            if args.rendervideo == "yes":

                from common.visualization import render_animation
                render_animation(input_keypoints,
                                 keypoints_metadata,
                                 anim_output,
                                 dataset.skeleton(),
                                 dataset.fps(),
                                 args.viz_bitrate,
                                 cam['azimuth'],
                                 args.viz_output,
                                 limit=args.viz_limit,
                                 downsample=args.viz_downsample,
                                 size=args.viz_size,
                                 input_video_path=args.viz_video,
                                 viewport=(cam['res_w'], cam['res_h']),
                                 input_video_skip=args.viz_skip)