Example #1
0
    def compute_images(self):
        """
        Compute images through decoder.
        """

        assert self.model.training is False
        num_batches = int(math.ceil(self.perturbations.shape[0]/self.args.batch_size))

        for b in range(num_batches):
            b_start = b * self.args.batch_size
            b_end = min((b + 1) * self.args.batch_size, self.perturbations.shape[0])

            batch_code = common.torch.as_variable(self.perturbation_codes[b_start: b_end], self.args.use_gpu)
            batch_theta = common.torch.as_variable(self.perturbation_theta[b_start: b_end], self.args.use_gpu)

            if isinstance(self.model, models.SelectiveDecoder):
                self.model.set_code(batch_code)
            theta_images = self.model(batch_theta)

            batch_perturbation = common.torch.as_variable(self.perturbations[b_start: b_end], self.args.use_gpu)
            perturbation_images = self.model(batch_perturbation)

            if b % 100:
                log('[Testing] %d' % b)

            theta_images = numpy.squeeze(numpy.transpose(theta_images.cpu().detach().numpy(), (0, 2, 3, 1)))
            self.theta_images = common.numpy.concatenate(self.theta_images, theta_images)

            perturbation_images = numpy.squeeze(numpy.transpose(perturbation_images.cpu().detach().numpy(), (0, 2, 3, 1)))
            self.perturbation_images = common.numpy.concatenate(self.perturbation_images, perturbation_images)

        self.theta_images = self.theta_images.reshape((self.theta_images.shape[0], -1))
        self.perturbation_images = self.perturbation_images.reshape((self.perturbation_images.shape[0], -1))
Example #2
0
    def compute_images(self):
        """
        Compute images through decoder.
        """

        assert self.model.training is False

        num_batches = int(
            math.ceil(self.perturbations.shape[0] / self.args.batch_size))
        for b in range(num_batches):
            b_start = b * self.args.batch_size
            b_end = min((b + 1) * self.args.batch_size,
                        self.perturbations.shape[0])

            batch_fonts = self.perturbation_codes[b_start:b_end, 1]
            batch_classes = self.perturbation_codes[b_start:b_end, 2]
            batch_code = numpy.concatenate(
                (common.numpy.one_hot(batch_fonts, self.N_font),
                 common.numpy.one_hot(batch_classes, self.N_class)),
                axis=1).astype(numpy.float32)

            batch_code = common.torch.as_variable(batch_code,
                                                  self.args.use_gpu)
            batch_theta = common.torch.as_variable(
                self.perturbation_theta[b_start:b_end], self.args.use_gpu)
            theta_images = self.model(batch_code, batch_theta)

            batch_perturbation = common.torch.as_variable(
                self.perturbations[b_start:b_end], self.args.use_gpu)
            perturbation_images = self.model(batch_code, batch_perturbation)

            if b % 100:
                log('[Testing] %d' % b)

            theta_images = numpy.squeeze(
                numpy.transpose(theta_images.cpu().detach().numpy(),
                                (0, 2, 3, 1)))
            self.theta_images = common.numpy.concatenate(
                self.theta_images, theta_images)

            perturbation_images = numpy.squeeze(
                numpy.transpose(perturbation_images.cpu().detach().numpy(),
                                (0, 2, 3, 1)))
            self.perturbation_images = common.numpy.concatenate(
                self.perturbation_images, perturbation_images)

        self.theta_images = self.theta_images.reshape(
            (self.theta_images.shape[0], -1))
        self.perturbation_images = self.perturbation_images.reshape(
            (self.perturbation_images.shape[0], -1))
Example #3
0
    def compute_images(self):
        """
        Compute images through decoder.
        """

        num_batches = int(math.ceil(self.perturbations.shape[0]/self.args.batch_size))

        for b in range(num_batches):
            b_start = b * self.args.batch_size
            b_end = min((b + 1) * self.args.batch_size, self.perturbations.shape[0])

            batch_images = common.torch.as_variable(self.test_images[b_start: b_end], self.args.use_gpu)

            self.model.set_image(batch_images)
            batch_perturbation = common.torch.as_variable(self.perturbations[b_start: b_end], self.args.use_gpu)
            perturbation_images = self.model(batch_perturbation)

            if b % 100:
                log('[Testing] %d' % b)

            perturbation_images = numpy.squeeze(numpy.transpose(perturbation_images.cpu().detach().numpy(), (0, 2, 3, 1)))
            self.perturbation_images = common.numpy.concatenate(self.perturbation_images, perturbation_images)

        self.test_images = self.test_images.reshape((self.test_images.shape[0], -1))
        self.perturbation_images = self.perturbation_images.reshape((self.perturbation_images.shape[0], -1))
Example #4
0
    def test_random(self):
        """
        Test random.
        """

        pred_images = None
        codes = numpy.random.normal(
            0, 1, (1000, self.args.latent_space_size)).astype(numpy.float32)
        num_batches = int(math.ceil(codes.shape[0] / self.args.batch_size))

        for b in range(num_batches):
            b_start = b * self.args.batch_size
            b_end = min((b + 1) * self.args.batch_size,
                        self.test_images.shape[0])
            batch_codes = common.torch.as_variable(codes[b_start:b_end],
                                                   self.args.use_gpu)

            # To get the correct images!
            output_images = self.decoder(batch_codes)

            output_images = numpy.squeeze(
                numpy.transpose(output_images.cpu().detach().numpy(),
                                (0, 2, 3, 1)))
            pred_images = common.numpy.concatenate(pred_images, output_images)

            if b % 100 == 50:
                log('[Testing] %d' % b)

        utils.write_hdf5(self.args.random_file, pred_images)
        log('[Testing] wrote %s' % self.args.random_file)
    def main(self):
        """
        Main method.
        """

        database = utils.read_hdf5(self.args.database_file)
        log('[Data] read %s' % self.args.database_file)

        N_font = database.shape[0]
        N_class = database.shape[1]

        assert database.shape[2] == database.shape[3]
        database = database.reshape((database.shape[0] * database.shape[1],
                                     database.shape[2], database.shape[3]))
        database = torch.from_numpy(database).float()
        if self.args.use_gpu:
            database = database.cuda()

        database = torch.autograd.Variable(database)

        codes = utils.read_hdf5(self.args.codes_file)
        codes = codes[:, 0]
        codes = common.numpy.one_hot(codes, N_font * N_class)
        log('[Data] read %s' % self.args.codes_file)

        theta = utils.read_hdf5(self.args.theta_file)
        N = theta.shape[0]
        N_theta = theta.shape[1]
        log('[Data] read %s' % self.args.theta_file)

        model = models.OneHotDecoder(database, N_theta)
        images = []

        num_batches = int(math.ceil(float(N) / self.args.batch_size))
        for b in range(num_batches):
            batch_theta = torch.from_numpy(
                theta[b * self.args.batch_size:min((b + 1) *
                                                   self.args.batch_size, N)])
            batch_codes = torch.from_numpy(
                codes[b * self.args.batch_size:min((b + 1) *
                                                   self.args.batch_size, N)])
            batch_codes, batch_theta = batch_codes.float(), batch_theta.float()

            if self.args.use_gpu:
                batch_codes, batch_theta = batch_codes.cuda(
                ), batch_theta.cuda()

            batch_codes, batch_theta = torch.autograd.Variable(
                batch_codes), torch.autograd.Variable(batch_theta)
            output = model(batch_codes, batch_theta)

            images.append(output.data.cpu().numpy().squeeze())
            if b % 1000 == 0:
                log('[Data] processed %d/%d batches' % (b + 1, num_batches))

        images = numpy.concatenate(images, axis=0)
        if len(images.shape) > 3:
            images = numpy.transpose(images, (0, 2, 3, 1))
        utils.write_hdf5(self.args.images_file, images)
        log('[Data] wrote %s' % self.args.images_file)
Example #6
0
    def test(self):
        """
        Test classifier to identify valid samples to attack.
        """

        num_batches = int(
            math.ceil(self.perturbations.shape[0] / self.args.batch_size))

        for b in range(num_batches):
            b_start = b * self.args.batch_size
            b_end = min((b + 1) * self.args.batch_size,
                        self.perturbations.shape[0])
            batch_fonts = self.test_fonts[b_start:b_end]
            batch_classes = self.test_classes[b_start:b_end]
            batch_code = numpy.concatenate(
                (common.numpy.one_hot(batch_fonts, self.N_font),
                 common.numpy.one_hot(batch_classes, self.N_class)),
                axis=1).astype(numpy.float32)

            batch_inputs = common.torch.as_variable(
                self.perturbations[b_start:b_end], self.args.use_gpu)
            batch_code = common.torch.as_variable(batch_code,
                                                  self.args.use_gpu)

            # This basically allows to only optimize over theta, keeping the font/class code fixed.
            self.model.set_code(batch_code)
            output_images = self.model(batch_inputs)

            output_images = numpy.squeeze(
                numpy.transpose(output_images.cpu().detach().numpy(),
                                (0, 2, 3, 1)))
            self.perturbation_images = common.numpy.concatenate(
                self.perturbation_images, output_images)

            if b % 100 == 0:
                log('[Testing] computing perturbation images %d' % b)

        utils.makedir(os.path.dirname(self.args.perturbation_images_file))
        if len(self.perturbation_images.shape) > 3:
            self.perturbation_images = self.perturbation_images.reshape(
                self.N_samples, self.N_attempts,
                self.perturbation_images.shape[1],
                self.perturbation_images.shape[2],
                self.perturbation_images.shape[3])
        else:
            self.perturbation_images = self.perturbation_images.reshape(
                self.N_samples, self.N_attempts,
                self.perturbation_images.shape[1],
                self.perturbation_images.shape[2])
        self.perturbation_images = numpy.swapaxes(self.perturbation_images, 0,
                                                  1)
        utils.write_hdf5(self.args.perturbation_images_file,
                         self.perturbation_images)
        log('[Testing] wrote %s' % self.args.perturbation_images_file)
Example #7
0
        def run(decoder, classifier, theta, codes, batch_size, use_gpu):
            """
            Run the model for given images.

            :param decoder: decoder
            :type decoder: torch.nn.Module
            :param classifier: classifier
            :type classifier: torch.nn.Module
            :param theta: transformation codes
            :type theta: numpy.ndarray
            :param codes: codes
            :type codes: numpy.ndarray
            :param batch_size: batch size
            :type batch_size: int
            :param use_gpu: whether to use GPU
            :type use_gpu: bool
            :return: representations, images
            :rtype: numpy.ndarray, numpy.ndarray
            """

            assert classifier.training is False
            assert decoder.training is False

            images = None
            representations = None
            num_batches = int(math.ceil(theta.shape[0] / batch_size))

            for b in range(num_batches):
                b_start = b * batch_size
                b_end = min((b + 1) * batch_size, theta.shape[0])

                batch_theta = common.torch.as_variable(theta[b_start:b_end],
                                                       use_gpu)
                batch_code = common.torch.as_variable(codes[b_start:b_end],
                                                      use_gpu)

                if isinstance(decoder, models.SelectiveDecoder):
                    decoder.set_code(batch_code)
                output_images = decoder.forward(batch_theta)
                output_representations = torch.nn.functional.softmax(
                    classifier.forward(output_images), dim=1)

                output_images = numpy.transpose(
                    output_images.data.cpu().numpy(), (0, 2, 3, 1))
                images = common.numpy.concatenate(images, output_images)

                output_representations = output_representations.data.cpu(
                ).numpy()
                representations = common.numpy.concatenate(
                    representations, output_representations)
                log('[Visualization] %d/%d' % (b + 1, num_batches))

            return representations, images
    def test(self):
        """
        Test classifier to identify valid samples to attack.
        """

        num_batches = int(
            math.ceil(self.perturbations.shape[0] / self.args.batch_size))

        for b in range(num_batches):
            b_start = b * self.args.batch_size
            b_end = min((b + 1) * self.args.batch_size,
                        self.perturbations.shape[0])
            batch_images = common.torch.as_variable(
                self.test_images[b_start:b_end], self.args.use_gpu)
            batch_inputs = common.torch.as_variable(
                self.perturbations[b_start:b_end], self.args.use_gpu)

            self.model.set_image(batch_images)
            output_images = self.model(batch_inputs)

            output_images = numpy.squeeze(
                numpy.transpose(output_images.cpu().detach().numpy(),
                                (0, 2, 3, 1)))
            self.perturbation_images = common.numpy.concatenate(
                self.perturbation_images, output_images)

            if b % 100 == 0:
                log('[Testing] computing perturbation images %d' % b)

        utils.makedir(os.path.dirname(self.args.perturbation_images_file))
        if len(self.perturbation_images.shape) > 3:
            self.perturbation_images = self.perturbation_images.reshape(
                self.N_samples, self.N_attempts,
                self.perturbation_images.shape[1],
                self.perturbation_images.shape[2],
                self.perturbation_images.shape[3])
        else:
            self.perturbation_images = self.perturbation_images.reshape(
                self.N_samples, self.N_attempts,
                self.perturbation_images.shape[1],
                self.perturbation_images.shape[2])
        self.perturbation_images = numpy.swapaxes(self.perturbation_images, 0,
                                                  1)
        utils.write_hdf5(self.args.perturbation_images_file,
                         self.perturbation_images)
        log('[Testing] wrote %s' % self.args.perturbation_images_file)
    def sample(self):
        """
        Test the model.
        """

        assert self.decoder is not None

        self.decoder.eval()
        log('[Sampling] set decoder to eval')

        images = None

        theta = common.numpy.truncated_normal(
            (self.args.N_samples, self.args.latent_space_size),
            lower=-self.args.bound,
            upper=self.args.bound).astype(numpy.float32)
        theta = theta.astype(numpy.float32)
        num_batches = int(math.ceil(theta.shape[0] / self.args.batch_size))

        for b in range(num_batches):
            b_start = b * self.args.batch_size
            b_end = min((b + 1) * self.args.batch_size, theta.shape[0])

            batch_theta = common.torch.as_variable(theta[b_start:b_end],
                                                   self.args.use_gpu)

            # Important to get the correct codes!
            assert self.decoder.training is False
            output_images = self.decoder(batch_theta)

            output_images = numpy.squeeze(
                numpy.transpose(output_images.cpu().detach().numpy(),
                                (0, 2, 3, 1)))
            images = common.numpy.concatenate(images, output_images)

            if b % 100 == 50:
                log('[Sampling] %d' % b)

        if self.args.images_file:
            utils.write_hdf5(self.args.images_file, images)
            log('[Sampling] wrote %s' % self.args.images_file)

        if self.args.theta_file:
            utils.write_hdf5(self.args.theta_file, theta)
            log('[Sampling] wrote %s' % self.args.theta_file)
Example #10
0
    def test_interpolation(self):
        """
        Test interpolation.
        """

        interpolations = None
        perm = numpy.random.permutation(
            numpy.array(range(self.pred_codes.shape[0])))

        for i in range(50):
            first = self.pred_codes[i]
            second = self.pred_codes[perm[i]]
            linfit = scipy.interpolate.interp1d([0, 1],
                                                numpy.vstack([first, second]),
                                                axis=0)
            interpolations = common.numpy.concatenate(
                interpolations, linfit(numpy.linspace(0, 1, 10)))

        pred_images = None
        num_batches = int(
            math.ceil(interpolations.shape[0] / self.args.batch_size))
        interpolations = interpolations.astype(numpy.float32)

        for b in range(num_batches):
            b_start = b * self.args.batch_size
            b_end = min((b + 1) * self.args.batch_size,
                        self.test_images.shape[0])
            batch_codes = common.torch.as_variable(
                interpolations[b_start:b_end], self.args.use_gpu)

            # To get the correct images!
            output_images = self.decoder(batch_codes)

            output_images = numpy.squeeze(
                numpy.transpose(output_images.cpu().detach().numpy(),
                                (0, 2, 3, 1)))
            pred_images = common.numpy.concatenate(pred_images, output_images)

            if b % 100 == 50:
                log('[Testing] %d' % b)

        utils.write_hdf5(self.args.interpolation_file, pred_images)
        log('[Testing] wrote %s' % self.args.interpolation_file)
Example #11
0
    def test_test(self):
        """
        Test on testing set.
        """

        num_batches = int(
            math.ceil(self.test_images.shape[0] / self.args.batch_size))

        for b in range(num_batches):
            b_start = b * self.args.batch_size
            b_end = min((b + 1) * self.args.batch_size,
                        self.test_images.shape[0])

            batch_images = common.torch.as_variable(
                self.test_images[b_start:b_end], self.args.use_gpu)
            batch_images = batch_images.permute(0, 3, 1, 2)

            # Important to get the correct codes!
            output_codes, output_logvar = self.encoder(batch_images)
            output_images = self.decoder(output_codes)
            e = self.reconstruction_loss(batch_images, output_images)
            self.reconstruction_error += e.data

            self.code_mean += torch.mean(output_codes).item()
            self.code_var += torch.var(output_codes).item()

            output_images = numpy.squeeze(
                numpy.transpose(output_images.cpu().detach().numpy(),
                                (0, 2, 3, 1)))
            self.pred_images = common.numpy.concatenate(
                self.pred_images, output_images)

            output_codes = output_codes.cpu().detach().numpy()
            self.pred_codes = common.numpy.concatenate(self.pred_codes,
                                                       output_codes)

            if b % 100 == 50:
                log('[Testing] %d' % b)

        assert self.pred_images.shape[0] == self.test_images.shape[
            0], 'computed invalid number of test images'
        if self.args.reconstruction_file:
            utils.write_hdf5(self.args.reconstruction_file, self.pred_images)
            log('[Testing] wrote %s' % self.args.reconstruction_file)

        if self.args.test_theta_file:
            assert self.pred_codes.shape[0] == self.test_images.shape[
                0], 'computed invalid number of test codes'
            utils.write_hdf5(self.args.test_theta_file, self.pred_codes)
            log('[Testing] wrote %s' % self.args.test_theta_file)

        threshold = 0.9
        percentage = 0
        # values = numpy.linalg.norm(pred_codes, ord=2, axis=1)
        values = numpy.max(numpy.abs(self.pred_codes), axis=1)

        while percentage < 0.9:
            threshold += 0.1
            percentage = numpy.sum(values <= threshold) / float(
                values.shape[0])
            log('[Testing] threshold %g percentage %g' %
                (threshold, percentage))
        log('[Testing] taking threshold %g with percentage %g' %
            (threshold, percentage))

        if self.args.output_directory and utils.display():
            # fit = 10
            # plot_file = os.path.join(self.args.output_directory, 'test_codes')
            # plot.manifold(plot_file, pred_codes[::fit], None, None, 'tsne', None, title='t-SNE of Test Codes')
            # log('[Testing] wrote %s' % plot_file)

            for d in range(1, self.pred_codes.shape[1]):
                plot_file = os.path.join(self.args.output_directory,
                                         'test_codes_%s' % d)
                plot.scatter(
                    plot_file,
                    self.pred_codes[:, 0],
                    self.pred_codes[:, d], (values <= threshold).astype(int),
                    ['greater %g' % threshold,
                     'smaller %g' % threshold],
                    title='Dimensions 0 and %d of Test Codes' % d)
                log('[Testing] wrote %s' % plot_file)

        self.reconstruction_error /= num_batches
        log('[Testing] reconstruction error %g' % self.reconstruction_error)
    def test(self, epoch):
        """
        Test the model.

        :param epoch: current epoch
        :type epoch: int
        """

        self.encoder.eval()
        log('[Training] %d set encoder to eval' % epoch)
        self.decoder.eval()
        log('[Training] %d set decoder to eval' % epoch)
        self.classifier.eval()
        log('[Training] %d set classifier to eval' % epoch)

        latent_loss = 0
        reconstruction_loss = 0
        reconstruction_error = 0
        decoder_loss = 0
        discriminator_loss = 0
        mean = 0
        var = 0
        logvar = 0
        pred_images = None
        pred_codes = None

        num_batches = int(
            math.ceil(self.test_images.shape[0] / self.args.batch_size))
        assert self.encoder.training is False

        for b in range(num_batches):
            b_start = b * self.args.batch_size
            b_end = min((b + 1) * self.args.batch_size,
                        self.test_images.shape[0])
            batch_images = common.torch.as_variable(
                self.test_images[b_start:b_end], self.args.use_gpu)
            batch_images = batch_images.permute(0, 3, 1, 2)

            output_mu, output_logvar = self.encoder(batch_images)
            output_images = self.decoder(output_mu)

            output_real_classes = self.classifier(batch_images)
            output_reconstructed_classes = self.classifier(output_images)

            # Latent loss.
            e = self.latent_loss(output_mu, output_logvar)
            latent_loss += e.item()

            # Reconstruction loss.
            e = self.reconstruction_loss(batch_images, output_images)
            reconstruction_loss += e.item()

            # Reconstruction error.
            e = self.reconstruction_error(batch_images, output_images)
            reconstruction_error += e.item()

            e = self.decoder_loss(output_reconstructed_classes)
            decoder_loss += e.item()

            # Adversarial loss.
            e = self.discriminator_loss(output_real_classes,
                                        output_reconstructed_classes)
            discriminator_loss += e.item()

            mean += torch.mean(output_mu).item()
            var += torch.var(output_mu).item()
            logvar += torch.mean(output_logvar).item()

            output_images = numpy.squeeze(
                numpy.transpose(output_images.cpu().detach().numpy(),
                                (0, 2, 3, 1)))
            pred_images = common.numpy.concatenate(pred_images, output_images)
            output_codes = output_mu.cpu().detach().numpy()
            pred_codes = common.numpy.concatenate(pred_codes, output_codes)

        utils.write_hdf5(self.args.reconstruction_file, pred_images)
        log('[Training] %d: wrote %s' % (epoch, self.args.reconstruction_file))

        if utils.display():
            png_file = self.args.reconstruction_file + '.%d.png' % epoch
            if epoch == 0:
                vis.mosaic(png_file, self.test_images[:225], 15, 5, 'gray', 0,
                           1)
            else:
                vis.mosaic(png_file, pred_images[:225], 15, 5, 'gray', 0, 1)
            log('[Training] %d: wrote %s' % (epoch, png_file))

        latent_loss /= num_batches
        reconstruction_loss /= num_batches
        reconstruction_error /= num_batches
        decoder_loss /= num_batches
        discriminator_loss /= num_batches
        mean /= num_batches
        var /= num_batches
        logvar /= num_batches
        log('[Training] %d: test %g (%g) %g (%g, %g, %g)' %
            (epoch, reconstruction_loss, reconstruction_error, latent_loss,
             mean, var, logvar))
        log('[Training] %d: test %g %g' %
            (epoch, decoder_loss, discriminator_loss))

        num_batches = int(
            math.ceil(self.train_images.shape[0] / self.args.batch_size))
        iteration = epoch * num_batches
        self.test_statistics = numpy.vstack(
            (self.test_statistics,
             numpy.array([
                 iteration, iteration * self.args.batch_size,
                 min(num_batches, iteration),
                 min(num_batches, iteration) * self.args.batch_size,
                 reconstruction_loss, reconstruction_error, latent_loss, mean,
                 var, logvar, decoder_loss, discriminator_loss
             ])))

        pred_images = None
        if self.random_codes is None:
            self.random_codes = common.numpy.truncated_normal(
                (1000, self.args.latent_space_size)).astype(numpy.float32)
        num_batches = int(
            math.ceil(self.random_codes.shape[0] / self.args.batch_size))

        for b in range(num_batches):
            b_start = b * self.args.batch_size
            b_end = min((b + 1) * self.args.batch_size,
                        self.test_images.shape[0])
            if b_start >= b_end: break

            batch_codes = common.torch.as_variable(
                self.random_codes[b_start:b_end], self.args.use_gpu)
            output_images = self.decoder(batch_codes)

            output_images = numpy.squeeze(
                numpy.transpose(output_images.cpu().detach().numpy(),
                                (0, 2, 3, 1)))
            pred_images = common.numpy.concatenate(pred_images, output_images)

        utils.write_hdf5(self.args.random_file, pred_images)
        log('[Training] %d: wrote %s' % (epoch, self.args.random_file))

        if utils.display() and epoch > 0:
            png_file = self.args.random_file + '.%d.png' % epoch
            vis.mosaic(png_file, pred_images[:225], 15, 5, 'gray', 0, 1)
            log('[Training] %d: wrote %s' % (epoch, png_file))

        interpolations = None
        perm = numpy.random.permutation(numpy.array(range(
            pred_codes.shape[0])))

        for i in range(50):
            first = pred_codes[i]
            second = pred_codes[perm[i]]
            linfit = scipy.interpolate.interp1d([0, 1],
                                                numpy.vstack([first, second]),
                                                axis=0)
            interpolations = common.numpy.concatenate(
                interpolations, linfit(numpy.linspace(0, 1, 10)))

        pred_images = None
        num_batches = int(
            math.ceil(interpolations.shape[0] / self.args.batch_size))
        interpolations = interpolations.astype(numpy.float32)

        for b in range(num_batches):
            b_start = b * self.args.batch_size
            b_end = min((b + 1) * self.args.batch_size,
                        self.test_images.shape[0])
            if b_start >= b_end: break

            batch_codes = common.torch.as_variable(
                interpolations[b_start:b_end], self.args.use_gpu)
            output_images = self.decoder(batch_codes)
            output_images = numpy.squeeze(
                numpy.transpose(output_images.cpu().detach().numpy(),
                                (0, 2, 3, 1)))
            pred_images = common.numpy.concatenate(pred_images, output_images)

            if b % 100 == 50:
                log('[Testing] %d' % b)

        utils.write_hdf5(self.args.interpolation_file, pred_images)
        log('[Testing] wrote %s' % self.args.interpolation_file)

        if utils.display() and epoch > 0:
            png_file = self.args.interpolation_file + '.%d.png' % epoch
            vis.mosaic(png_file, pred_images[:100], 10, 5, 'gray', 0, 1)
            log('[Training] %d: wrote %s' % (epoch, png_file))
Example #13
0
    def attack(self):
        """
        Test the model.
        """

        assert self.model is not None
        assert self.model.training is False
        assert self.test_images.shape[0] == self.test_codes.shape[0], 'number of samples has to match'

        concatenate_axis = -1
        if os.path.exists(self.args.perturbations_file) and os.path.exists(self.args.success_file):
            self.original_perturbations = utils.read_hdf5(self.args.perturbations_file)
            if self.test_images.shape[3] > 1:
                assert len(self.original_perturbations.shape) == 5
            else:
                assert len(self.original_perturbations.shape) == 4
            log('[Attack] read %s' % self.args.perturbations_file)

            self.original_success = utils.read_hdf5(self.args.success_file)
            log('[Attack] read %s' % self.args.success_file)

            assert self.original_perturbations.shape[0] == self.original_success.shape[0]
            assert self.original_perturbations.shape[1] == self.original_success.shape[1]
            assert self.original_perturbations.shape[2] == self.test_images.shape[1]
            assert self.original_perturbations.shape[3] == self.test_images.shape[2]#

            if self.original_perturbations.shape[1] >= self.args.max_samples and self.original_perturbations.shape[0] >= self.args.max_attempts:
                log('[Attack] found %d attempts, %d samples, requested no more' % (self.original_perturbations.shape[0], self.original_perturbations.shape[1]))
                return
            elif self.original_perturbations.shape[0] == self.args.max_attempts or self.original_perturbations.shape[1] == self.args.max_samples:
                if self.original_perturbations.shape[0] == self.args.max_attempts:
                    self.test_images = self.test_images[self.original_perturbations.shape[1]:]
                    self.test_codes = self.test_codes[self.original_perturbations.shape[1]:]
                    self.args.max_samples = self.args.max_samples - self.original_perturbations.shape[1]
                    concatenate_axis = 1
                    log('[Attack] found %d attempts with %d perturbations, computing %d more perturbations' % (self.original_perturbations.shape[0], self.original_perturbations.shape[1], self.args.max_samples))
                elif self.original_perturbations.shape[1] == self.args.max_samples:
                    self.args.max_attempts = self.args.max_attempts - self.original_perturbations.shape[0]
                    concatenate_axis = 0
                    log('[Attack] found %d attempts with %d perturbations, computing %d more attempts' % (self.original_perturbations.shape[0], self.original_perturbations.shape[1], self.args.max_attempts))

        # can't squeeze here!
        if self.test_images.shape[3] > 1:
            self.perturbations = numpy.zeros((self.args.max_attempts, self.args.max_samples, self.test_images.shape[1], self.test_images.shape[2], self.test_images.shape[3]))
        else:
            self.perturbations = numpy.zeros((self.args.max_attempts, self.args.max_samples, self.test_images.shape[1], self.test_images.shape[2]))
        self.success = numpy.ones((self.args.max_attempts, self.args.max_samples), dtype=int) * -1

        if self.args.attack.find('Batch') >= 0:
            batch_size = min(self.args.batch_size, self.args.max_samples)
        else:
            batch_size = 1

        objective = self.objective_class()
        num_batches = int(math.ceil(self.args.max_samples/batch_size))

        for i in range(num_batches):  # self.test_images.shape[0]
            if i*batch_size == self.args.max_samples:
                break
                
            i_start = i*batch_size
            i_end = min((i+1)*batch_size, self.args.max_samples)

            batch_images = common.torch.as_variable(self.test_images[i_start: i_end], self.args.use_gpu)
            batch_classes = common.torch.as_variable(numpy.array(self.test_codes[i_start: i_end]), self.args.use_gpu)
            batch_images = batch_images.permute(0, 3, 1, 2)

            t = 0
            while t < self.args.max_attempts:
                attack = self.setup_attack(batch_images, batch_classes)
                success, perturbations, probabilities, norm, _ = attack.run(objective)
                assert not numpy.any(perturbations != perturbations), perturbations

                # Note that we save the perturbed image, not only the perturbation!
                self.perturbations[t][i_start: i_end] = numpy.squeeze(numpy.transpose(perturbations + batch_images.cpu().numpy(), (0, 2, 3, 1)))
                self.success[t][i_start: i_end] = success

                # IMPORTANT: The adversarial examples are not considering whether the classifier is
                # actually correct to start with.

                t += 1

            log('[Attack] %d: completed' % i)

        if concatenate_axis >= 0:
            if self.perturbations.shape[0] == self.args.max_attempts:
                self.perturbations = numpy.concatenate((self.original_perturbations, self.perturbations), axis=concatenate_axis)
                self.success = numpy.concatenate((self.original_success, self.success), axis=concatenate_axis)
                log('[Attack] concatenated')

        utils.write_hdf5(self.args.perturbations_file, self.perturbations)
        log('[Attack] wrote %s' % self.args.perturbations_file)
        utils.write_hdf5(self.args.success_file, self.success)
        log('[Attack] wrote %s' % self.args.success_file)
    def attack(self):
        """
        Test the model.
        """

        assert self.model is not None
        assert self.model.training is False

        if self.args.attack.find('Batch') >= 0:
            batch_size = min(self.args.batch_size, self.args.max_samples)
        else:
            batch_size = 1

        objective = self.objective_class()
        num_batches = int(math.ceil(self.args.max_samples / batch_size))

        # can't squeeze here!
        if self.test_images.shape[3] > 1:
            self.perturbations = numpy.zeros(
                (self.args.max_attempts, self.args.max_samples,
                 self.test_images.shape[1], self.test_images.shape[2],
                 self.test_images.shape[3]))
        else:
            self.perturbations = numpy.zeros(
                (self.args.max_attempts, self.args.max_samples,
                 self.test_images.shape[1], self.test_images.shape[2]))
        self.success = numpy.ones(
            (self.args.max_attempts, self.args.max_samples), dtype=int) * -1
        self.probabilities = numpy.zeros(
            (self.args.max_attempts, self.args.max_samples, self.N_class))

        for i in range(num_batches):  # self.test_images.shape[0]
            if i * batch_size == self.args.max_samples:
                break

            i_start = i * batch_size
            i_end = min((i + 1) * batch_size, self.args.max_samples)

            batch_images = numpy.random.randint(0,
                                                255,
                                                size=[batch_size] +
                                                self.test_images.shape[1:])
            batch_images = common.torch.as_variable(batch_images,
                                                    self.args.use_gpu)
            batch_images = batch_images.permute(0, 3, 1, 2)

            batch_classes = common.torch.as_variable(
                numpy.random.randint(0,
                                     self.N_class - 1,
                                     size=(batch_images.size(0))),
                self.args.use_gpu)

            t = 0
            while t < self.args.max_attempts:
                attack = self.setup_attack(batch_images, batch_classes)
                success, perturbations, probabilities, norm, _ = attack.run(
                    objective)
                assert not numpy.any(
                    perturbations != perturbations), perturbations

                # Note that we save the perturbed image, not only the perturbation!
                self.perturbations[t][i_start:i_end] = numpy.squeeze(
                    numpy.transpose(perturbations + batch_images.cpu().numpy(),
                                    (0, 2, 3, 1)))
                self.success[t][i_start:i_end] = success
                self.probabilities[t][i_start:i_end] = probabilities
                # IMPORTANT: The adversarial examples are not considering whether the classifier is
                # actually correct to start with.

                t += 1

            log('[Attack] %d: completed' % i)

        utils.write_hdf5(self.args.perturbations_file, self.perturbations)
        log('[Attack] wrote %s' % self.args.perturbations_file)
        utils.write_hdf5(self.args.success_file, self.success)
        log('[Attack] wrote %s' % self.args.success_file)
        utils.write_hdf5(self.args.probabilities_file, self.probabilities)
        log('[Attack] wrote %s' % self.args.probabilities_file)
    def compute_true(self):
        """
        Compute true.
        """

        assert self.test_codes is not None
        num_batches = int(math.ceil(self.perturbations.shape[0] / self.args.batch_size))

        params = {
            'lr': 0.09,
            'lr_decay': 0.95,
            'lr_min': 0.0000001,
            'weight_decay': 0,
        }

        for b in range(num_batches):
            b_start = b * self.args.batch_size
            b_end = min((b + 1) * self.args.batch_size, self.perturbations.shape[0])

            batch_fonts = self.test_codes[b_start: b_end, 1]
            batch_classes = self.test_codes[b_start: b_end, 2]
            batch_code = numpy.concatenate((common.numpy.one_hot(batch_fonts, self.N_font), common.numpy.one_hot(batch_classes, self.N_class)), axis=1).astype( numpy.float32)
            batch_code = common.torch.as_variable(batch_code, self.args.use_gpu)

            batch_images = common.torch.as_variable(self.test_images[b_start: b_end], self.args.use_gpu)
            batch_images = batch_images.permute(0, 3, 1, 2)

            batch_theta = common.torch.as_variable(self.test_theta[b_start: b_end].astype(numpy.float32), self.args.use_gpu, True)
            batch_perturbation = common.torch.as_variable(self.perturbations[b_start: b_end].astype(numpy.float32), self.args.use_gpu)

            self.model.set_code(batch_code)

            #output_images = self.model.forward(batch_theta)
            #test_error = torch.mean(torch.mul(output_images - batch_images, output_images - batch_images))
            #print(test_error.item())
            #vis.mosaic('true.png', batch_images.cpu().detach().numpy()[:, 0, :, :])
            #vis.mosaic('output.png', output_images.cpu().detach().numpy()[:, 0, :, :])
            # print(batch_images.cpu().detach().numpy()[0])
            # print(output_images.cpu().detach().numpy()[0, 0])

            #_batch_images = batch_images.cpu().detach().numpy()
            #_output_images = output_images.cpu().detach().numpy()[:, 0, :, :]
            #test_error = numpy.max(numpy.abs(_batch_images.reshape(_batch_images.shape[0], -1) - _output_images.reshape(_output_images.shape[0], -1)), axis=1)
            #print(test_error)
            #test_error = numpy.mean(numpy.multiply(_batch_images - _output_images, _batch_images - _output_images), axis=1)
            #print(test_error)

            batch_theta = torch.nn.Parameter(batch_theta)
            scheduler = ADAMScheduler([batch_theta], **params)

            log('[Detection] %d: start' % b)
            for t in range(100):
                scheduler.update(t//10, float(t)/10)
                scheduler.optimizer.zero_grad()
                output_perturbation = self.model.forward(batch_theta)
                error = torch.mean(torch.mul(output_perturbation - batch_perturbation, output_perturbation - batch_perturbation))
                test_error = torch.mean(torch.mul(output_perturbation - batch_images, output_perturbation - batch_images))
                #error.backward()
                #scheduler.optimizer.step()

                log('[Detection] %d: %d = %g, %g' % (b, t, error.item(), test_error.item()))

                output_perturbation = numpy.squeeze(numpy.transpose(output_perturbation.cpu().detach().numpy(), (0, 2, 3, 1)))
            self.projected_perturbations = common.numpy.concatenate(self.projected_perturbations, output_perturbation)

        projected_perturbations = self.projected_perturbations.reshape((self.projected_perturbations.shape[0], -1))
        perturbations = self.perturbations.reshape((self.perturbations.shape[0], -1))

        success = numpy.logical_and(self.success >= 0, self.accuracy)
        log('[Detection] %d valid attacked samples' % numpy.sum(success))

        self.distances['true'] = numpy.linalg.norm(perturbations - projected_perturbations, ord=2, axis=1)
        self.angles['true'] = numpy.rad2deg(common.numpy.angles(perturbations.T, projected_perturbations.T))

        self.distances['true'] = self.distances['true'][success]
        self.angles['true'] = self.angles['true'][success]

        self.distances['test'] = numpy.zeros((numpy.sum(success)))
        self.angles['test'] = numpy.zeros((numpy.sum(success)))