def get_joints_info(num_joints): # Body+toe keypoints if num_joints == 19: joints_left = [5, 6, 7, 8, 13, 14, 15] joints_right = [1, 2, 3, 4, 16, 17, 18] h36m_skeleton = Skeleton(parents=[ -1, 0, 1, 2, 3, 0, 5, 6, 7, 0, 9, 10, 11, 10, 13, 14, 10, 16, 17 ], joints_left=[5, 6, 7, 8, 13, 14, 15], joints_right=[1, 2, 3, 4, 16, 17, 18]) # Body keypoints else: joints_left = [4, 5, 6, 11, 12, 13] joints_right = [1, 2, 3, 14, 15, 16] h36m_skeleton = Skeleton( parents=[-1, 0, 1, 2, 0, 4, 5, 0, 7, 8, 9, 8, 11, 12, 8, 14, 15], joints_left=[4, 5, 6, 11, 12, 13], joints_right=[1, 2, 3, 14, 15, 16]) keypoints_metadata = { 'keypoints_symmetry': (joints_left, joints_right), 'layout_name': 'Human3.6M', 'num_joints': num_joints } return joints_left, joints_right, h36m_skeleton, keypoints_metadata
def __init__(self, args): print("Application Entry.") self.args = args assert args.cv_camera_index is not None or args.cv_video_path is not None # initialize. print("Initialize.") self.cap = None if args.cv_camera_index is not None: self.cap = cv2.VideoCapture(args.cv_camera_index) else: self.cap = cv2.VideoCapture(args.cv_video_path) # setup skeleton from common.skeleton import Skeleton self.skeleton = Skeleton( parents=[-1, 0, 1, 2, 0, 4, 5, 0, 7, 8, 8, 10, 11, 8, 13, 14], joints_left=[4, 5, 6, 10, 11, 12], joints_right=[1, 2, 3, 13, 14, 15]) self.skeleton._joints_group = [[2, 3], [5, 6], [1, 4], [0, 7], [8, 9], [14, 15], [11, 12], [10, 13]] # setup drivers self.device_driver = DeviceDriver(args) self.mmpose_driver = MMPoseDriver(args, self.device_driver, self.skeleton) self.semgcm_driver = SemGCMDriver(args, self.device_driver, self.skeleton)
print('=> Rendering...') prediction = np.load(args.viz_input) rot = np.array([0.14070565, -0.15007018, -0.7552408, 0.62232804], dtype=np.float32) # Example value taken from h36m prediction = camera_to_world(prediction, R=rot, t=0) # Invert camera transformation prediction[:, :, 2] -= np.min( prediction[:, :, 2] ) # We don't have the trajectory, but at least we can rebase the height anim_output = {'Inference': prediction} skeleton = Skeleton( parents=[ -1, 0, 1, 2, 3, 4, 0, 6, 7, 8, 9, 0, 11, 12, 13, 14, 12, 16, 17, 18, 19, 20, 19, 22, 12, 24, 25, 26, 27, 28, 27, 30 ], joints_left=[6, 7, 8, 9, 10, 16, 17, 18, 19, 20, 21, 22, 23], joints_right=[1, 2, 3, 4, 5, 24, 25, 26, 27, 28, 29, 30, 31]) skeleton.remove_joints( [4, 5, 9, 10, 11, 16, 20, 21, 22, 23, 24, 28, 29, 30, 31]) skeleton._parents[11] = 8 skeleton._parents[14] = 8 render_animation(anim_output, skeleton, 24, 3000, 70.0, args.viz_output, viewport=(1000, 1002))
# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import numpy as np import copy from common.skeleton import Skeleton from common.mocap_dataset import MocapDataset from common.camera import normalize_screen_coordinates, image_coordinates humaneva_skeleton = Skeleton(parents=[-1, 0, 1, 2, 3, 1, 5, 6, 0, 8, 9, 0, 11, 12, 1], joints_left=[2, 3, 4, 8, 9, 10], joints_right=[5, 6, 7, 11, 12, 13]) humaneva_cameras_intrinsic_params = [ { 'id': 'C1', 'res_w': 640, 'res_h': 480, 'azimuth': 0, # Only used for visualization }, { 'id': 'C2', 'res_w': 640, 'res_h': 480, 'azimuth': -90, # Only used for visualization }, {
# All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import numpy as np import copy from common.skeleton import Skeleton from common.mocap_dataset import MocapDataset from common.camera import normalize_screen_coordinates, image_coordinates h36m_skeleton = Skeleton( parents=[ -1, 0, 1, 2, 3, 4, 0, 6, 7, 8, 9, 0, 11, 12, 13, 14, 12, 16, 17, 18, 19, 20, 19, 22, 12, 24, 25, 26, 27, 28, 27, 30 ], joints_left=[6, 7, 8, 9, 10, 16, 17, 18, 19, 20, 21, 22, 23], joints_right=[1, 2, 3, 4, 5, 24, 25, 26, 27, 28, 29, 30, 31]) h36m_cameras_intrinsic_params = [ { 'id': '54138969', 'center': [512.54150390625, 515.4514770507812], 'focal_length': [1145.0494384765625, 1143.7811279296875], 'radial_distortion': [-0.20709891617298126, 0.24777518212795258, -0.0030751503072679043], 'tangential_distortion': [-0.0009756988729350269, -0.00142447161488235], 'res_w':
from __future__ import absolute_import, division import numpy as np import copy from common.skeleton import Skeleton from common.mocap_dataset import MocapDataset from common.camera import normalize_screen_coordinates h36m_skeleton = Skeleton( parents=[ -1, 0, 1, 2, 3, 4, 0, 6, 7, 8, 9, 0, 11, 12, 13, 14, 12, 16, 17, 18, 19, 20, 19, 22, 12, 24, 25, 26, 27, 28, 27, 30 ], joints_left=[6, 7, 8, 9, 10, 16, 17, 18, 19, 20, 21, 22, 23], joints_right=[1, 2, 3, 4, 5, 24, 25, 26, 27, 28, 29, 30, 31], # joints_group=[(1, 2, 3), (4, 5, 6), (0, 7, 8), (14, 15, 16), (11, 12, 13), (9, 10)]) joints_group=[[2, 3], [5, 6], [1, 4], [0, 7], [8, 9], [15, 16], [12, 13], [11, 14], [10]], N=1) # Joints in H3.6M -- data has 32 joints, but only 17 that move; these are the indices. H36M_NAMES = [''] * 32 H36M_NAMES[0] = 'Hip' H36M_NAMES[1] = 'RHip' H36M_NAMES[2] = 'RKnee' H36M_NAMES[3] = 'RFoot' H36M_NAMES[6] = 'LHip' H36M_NAMES[7] = 'LKnee' H36M_NAMES[8] = 'LFoot' H36M_NAMES[12] = 'Spine' H36M_NAMES[13] = 'Thorax'
skeleton_cmu = Skeleton(offsets=[ [0., 0., 0.], [0., 0., 0.], [1.36306, -1.79463, 0.83929], [2.44811, -6.72613, 0.], [2.5622, -7.03959, 0.], [0.15764, -0.43311, 2.32255], [0., 0., 0.], [-1.30552, -1.79463, 0.83929], [-2.54253, -6.98555, 0.], [-2.56826, -7.05623, 0.], [-0.16473, -0.45259, 2.36315], [0., 0., 0.], [0.02827, 2.03559, -0.19338], [0.05672, 2.04885, -0.04275], [0., 0., 0.], [-0.05417, 1.74624, 0.17202], [0.10407, 1.76136, -0.12397], [0., 0., 0.], [3.36241, 1.20089, -0.31121], [4.983, -0., -0.], [3.48356, -0., -0.], [0., 0., 0.], [0.71526, -0., -0.], [0., 0., 0.], [0., 0., 0.], [-3.1366, 1.37405, -0.40465], [-5.2419, -0., -0.], [-3.44417, -0., -0.], [0., 0., 0.], [-0.62253, -0., -0.], [0., 0., 0.], ], parents=[ -1, 0, 1, 2, 3, 4, 0, 6, 7, 8, 9, 0, 11, 12, 13, 14, 15, 13, 17, 18, 19, 20, 21, 20, 13, 24, 25, 26, 27, 28, 27 ], joints_left=[6, 7, 8, 9, 10, 21, 22, 23, 24, 25], joints_right=[1, 2, 3, 4, 5, 16, 17, 18, 19, 20])
skeleton_imperial = Skeleton(offsets=[ [0, 0, 0], [0.091287263088, 0.547940149596, -0.12057665264400001], [0, 0.30301749648, -1.7184998080799998], [0, 0.28487456662, -1.61524105617], [0.437734481618, 3.412177735459999e-12, -0.125472266928], [0.224819, 1.7473719546499998e-12, -9.905952296100001e-12], [0.091287246328, -0.528250154848, -0.120576355119999], [0, -0.30589658032, -1.7348279247199998], [0, -0.28551970826, -1.61915893684], [0.46028240332799997, -3.583826328e-12, -0.145672347456], [0.237732, -1.8561377590799993e-12, -1.047886996199999e-11], [-0.0085707703935, -0.0033291245673, 0.444873776633999], [0.0060529383405000005, 0.0014894078199000002, 0.44544134246999995], [0.009564423742999002, 0.00298004521605, 0.444805990574], [-0.036025562196, 0.00261801257508, 0.35821961838000005], [-0.05033537756, 0.0022401767544, 0.353248623519999], [-0.013775639145499001, 0.00051162794125, 0.363433503294999], [-8.7418796185e-19, 0.756491829177, -0.147047146659], [2.1336019996000002e-26, 0.6287597852000001, -1.1343121704], [2.33509479224e-26, 0.36122902213999997, -0.65167411428], [2.63159004766e-26, 0.18061451106999998, -0.32583705714], [-0.055182976822999004, 0.17723818283599999, -0.319275285134], [-8.741936553799999e-19, -0.733233159039, -0.14252611821299999], [-1.8732430327000002e-26, -0.6255842797000001, -1.1285834094], [-2.2757703002599992e-26, -0.35511459842, -0.64064340684], [-2.69211306906e-26, -0.17755729921, -0.32032170342], [-0.055012222539, -0.16729379953200002, -0.301461351522] ], parents=[ -1, 0, 1, 2, 3, 4, 0, 6, 7, 8, 9, 0, 11, 12, 13, 14, 15, 13, 17, 18, 19, 20, 13, 22, 23, 24, 25 ], joints_left=[1, 2, 3, 4, 5, 17, 18, 19, 20, 21], joints_right=[6, 7, 8, 9, 10, 22, 23, 24, 25, 26])
R_FOOT = 3 R_SHOULDER = 14 R_ELBOW = 15 R_HAND = 16 ROOT = 17 PARENTS = [ INVALID, PELVIS, R_HIP, R_KNEE, PELVIS, L_HIP, L_KNEE, PELVIS, SPINE, CHEST, NECK, CHEST, L_SHOULDER, L_ELBOW, CHEST, R_SHOULDER, R_ELBOW ] # legs top to bottom (3), arms top to bottom (3) LEFT = [L_HIP, L_KNEE, L_FOOT, L_SHOULDER, L_ELBOW, L_HAND] RIGHT = [R_HIP, R_KNEE, R_FOOT, R_SHOULDER, R_ELBOW, R_HAND] s = Skeleton(PARENTS, LEFT, RIGHT) # CENTER s._meta[PELVIS] = { "location": "center", "joint": "pelvis", "joints": (ROOT, PELVIS, SPINE), "min": 0, "max": 135 } s._meta[SPINE] = { "location": "center", "joint": "spine", "joints": (PELVIS, SPINE, CHEST), "min": 90,
short_term_weights_path = 'weights_short_term.bin' skeleton_h36m = Skeleton(offsets=[[0., 0., 0.], [-132.948591, 0., 0.], [0., -442.894612, 0.], [0., -454.206447, 0.], [0., 0., 162.767078], [0., 0., 74.999437], [132.948826, 0., 0.], [0., -442.894413, 0.], [0., -454.20659, 0.], [0., 0., 162.767426], [0., 0., 74.999948], [0., 0.1, 0.], [0., 233.383263, 0.], [0., 257.077681, 0.], [0., 121.134938, 0.], [0., 115.002227, 0.], [0., 257.077681, 0.], [0., 151.034226, 0.], [0., 278.882773, 0.], [0., 251.733451, 0.], [0., 0., 0.], [0., 0., 99.999627], [0., 100.000188, 0.], [0., 0., 0.], [0., 257.077681, 0.], [0., 151.031437, 0.], [0., 278.892924, 0.], [0., 251.72868, 0.], [0., 0., 0.], [0., 0., 99.999888], [0., 137.499922, 0.], [0., 0., 0.]], parents=[ -1, 0, 1, 2, 3, 4, 0, 6, 7, 8, 9, 0, 11, 12, 13, 14, 12, 16, 17, 18, 19, 20, 19, 22, 12, 24, 25, 26, 27, 28, 27, 30 ], joints_left=[ 1, 2, 3, 4, 5, 24, 25, 26, 27, 28, 29, 30, 31 ], joints_right=[ 6, 7, 8, 9, 10, 16, 17, 18, 19, 20, 21, 22, 23 ]) dataset = MocapDataset(dataset_path, skeleton_h36m, fps=50)
self.layers_conv[2 * i + 1](x)))) x = self.layers_graph_conv[i + 1](x) return x if __name__ == "__main__": import torch import numpy as np import torchsummary from common.skeleton import Skeleton from common.graph_utils import adj_mx_from_skeleton h36m_skeleton = Skeleton( parents=[-1, 0, 1, 2, 0, 4, 5, 0, 7, 8, 9, 8, 11, 12, 8, 14, 15], joints_left=[6, 7, 8, 9, 10, 16, 17, 18, 19, 20, 21, 22, 23], joints_right=[1, 2, 3, 4, 5, 24, 25, 26, 27, 28, 29, 30, 31]) humaneva_skeleton = Skeleton( parents=[-1, 0, 1, 2, 3, 1, 5, 6, 0, 8, 9, 0, 11, 12, 1], joints_left=[2, 3, 4, 8, 9, 10], joints_right=[5, 6, 7, 11, 12, 13]) adj = adj_mx_from_skeleton(h36m_skeleton) model = SpatioTemporalModel(adj, num_joints_in=17, in_features=2, num_joints_out=17, filter_widths=[3, 3, 3, 3], channels=64) model = model.cuda()