Example #1
0
def evaluate(env,
             policy_func,
             load_model_path,
             stochastic_policy=False,
             number_trajs=10):
    from gail.trpo_mpi import traj_episode_generator
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space,
                     ac_space)  # Construct network for new policy
    # placeholder
    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])
    stochastic = U.get_placeholder_cached(name="stochastic")
    ep_gen = traj_episode_generator(pi,
                                    env,
                                    1024,
                                    stochastic=stochastic_policy)
    U.load_state(load_model_path)
    len_list = []
    ret_list = []
    for _ in tqdm(range(number_trajs)):
        traj = ep_gen.__next__()
        ep_len, ep_ret = traj['ep_len'], traj['ep_ret']
        len_list.append(ep_len)
        ret_list.append(ep_ret)
    if stochastic_policy:
        print('stochastic policy:')
    else:
        print('deterministic policy:')
    print("Average length:", sum(len_list) / len(len_list))
    print("Average return:", sum(ret_list) / len(ret_list))
Example #2
0
def learn(env,
          policy_func,
          dataset,
          pretrained,
          optim_batch_size=128,
          max_iters=1e4,
          adam_epsilon=1e-5,
          optim_stepsize=3e-4,
          ckpt_dir=None,
          log_dir=None,
          task_name=None):
    val_per_iter = int(max_iters / 10)
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space,
                     ac_space)  # Construct network for new policy
    # placeholder
    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])
    stochastic = U.get_placeholder_cached(name="stochastic")
    loss = tf.reduce_mean(tf.square(ac - pi.ac))
    var_list = pi.get_trainable_variables()
    adam = MpiAdam(var_list, epsilon=adam_epsilon)
    lossandgrad = U.function([ob, ac, stochastic],
                             [loss] + [U.flatgrad(loss, var_list)])

    if not pretrained:
        writer = U.FileWriter(log_dir)
        ep_stats = stats(["Loss"])
    U.initialize()
    adam.sync()
    logger.log("Pretraining with Behavior Cloning...")
    for iter_so_far in tqdm(range(int(max_iters))):
        ob_expert, ac_expert = dataset.get_next_batch(optim_batch_size,
                                                      'train')
        loss, g = lossandgrad(ob_expert, ac_expert, True)
        adam.update(g, optim_stepsize)
        if not pretrained:
            ep_stats.add_all_summary(writer, [loss], iter_so_far)
        if iter_so_far % val_per_iter == 0:
            ob_expert, ac_expert = dataset.get_next_batch(-1, 'val')
            loss, g = lossandgrad(ob_expert, ac_expert, False)
            logger.log("Validation:")
            logger.log("Loss: %f" % loss)
            if not pretrained:
                U.save_state(os.path.join(ckpt_dir, task_name),
                             counter=iter_so_far)
    if pretrained:
        savedir_fname = tempfile.TemporaryDirectory().name
        U.save_state(savedir_fname, var_list=pi.get_variables())
        return savedir_fname
Example #3
0
def learn(
        env,
        model_path,
        data_path,
        policy_fn,
        *,
        horizon=150,  # timesteps per actor per update
        rolloutSize=50,
        clip_param=0.2,
        entcoeff=0.02,  # clipping parameter epsilon, entropy coeff
        optim_epochs=10,
        optim_stepsize=3e-4,
        optim_batchsize=32,  # optimization hypers
        gamma=0.99,
        lam=0.95,  # advantage estimation
        max_iters=0,  # time constraint
        adam_epsilon=1e-4,
        schedule='constant',  # annealing for stepsize parameters (epsilon and adam)
        retrain=False):

    # Setup losses and policy
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_fn("pi", ob_space,
                   ac_space)  # Construct network for new policy
    oldpi = policy_fn("oldpi", ob_space, ac_space)  # Network for old policy
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return
    lrmult = tf.placeholder(
        name='lrmult', dtype=tf.float32,
        shape=[])  # learning rate multiplier, updated with schedule

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    pol_entpen = (-entcoeff) * meanent

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))  # pnew / pold
    surr1 = ratio * atarg  # surrogate from conservative policy iteration
    surr2 = tf.clip_by_value(ratio, 1.0 - clip_param,
                             1.0 + clip_param) * atarg  #
    pol_surr = -tf.reduce_mean(tf.minimum(
        surr1, surr2))  # PPO's pessimistic surrogate (L^CLIP)
    vf_loss = tf.reduce_mean(tf.square(pi.vpred - ret))
    total_loss = pol_surr + pol_entpen + vf_loss
    losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent]
    loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"]

    var_list = pi.get_trainable_variables()
    lossandgrad = U.function([ob, ac, atarg, ret, lrmult],
                             losses + [U.flatgrad(total_loss, var_list)])
    adam = MpiAdam(var_list, epsilon=adam_epsilon)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg, ret, lrmult], losses)

    U.initialize()
    adam.sync()

    # Prepare for rollouts
    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=5)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=5)  # rolling buffer for episode rewards

    p = []  # for saving the rollouts

    if retrain == True:
        print("Retraining the policy from saved path")
        time.sleep(2)
        U.load_state(model_path)
    max_timesteps = int(horizon * rolloutSize * max_iters)

    while True:
        if max_iters and iters_so_far >= max_iters:
            break
        if schedule == 'constant':
            cur_lrmult = 1.0
        elif schedule == 'linear':
            cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0)
        else:
            raise NotImplementedError

        logger.log("********** Iteration %i ************" % iters_so_far)
        print("Collecting samples for policy optimization !! ")
        if iters_so_far > 70:
            render = True
        else:
            render = False
        rollouts = sample_trajectory(pi,
                                     env,
                                     horizon=horizon,
                                     rolloutSize=rolloutSize,
                                     stochastic=True,
                                     render=render)
        # Save rollouts
        data = {'rollouts': rollouts}
        p.append(data)
        del data
        data_file_name = data_path + 'rollout_data.pkl'
        pickle.dump(p, open(data_file_name, "wb"))

        add_vtarg_and_adv(rollouts, gamma, lam)

        ob, ac, atarg, tdlamret = rollouts["ob"], rollouts["ac"], rollouts[
            "adv"], rollouts["tdlamret"]
        atarg = (atarg - atarg.mean()
                 ) / atarg.std()  # standardized advantage function estimate
        d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vtarg=tdlamret),
                    deterministic=pi.recurrent)
        optim_batchsize = optim_batchsize or ob.shape[0]

        if hasattr(pi, "ob_rms"):
            pi.ob_rms.update(ob)  # update running mean/std for policy

        assign_old_eq_new()  # set old parameter values to new parameter values
        logger.log("Optimizing...")
        # Here we do a bunch of optimization epochs over the data
        for _ in range(optim_epochs):
            losses = [
            ]  # list of tuples, each of which gives the loss for a minibatch
            for batch in d.iterate_once(optim_batchsize):
                *newlosses, g = lossandgrad(batch["ob"], batch["ac"],
                                            batch["atarg"], batch["vtarg"],
                                            cur_lrmult)
                adam.update(g, optim_stepsize * cur_lrmult)
                losses.append(newlosses)

        lrlocal = (rollouts["ep_lens"], rollouts["ep_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        logger.record_tabular("Success", rollouts["success"])
        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1
        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if MPI.COMM_WORLD.Get_rank() == 0:
            logger.dump_tabular()

    return pi
Example #4
0
def learn(
        env,
        policy_func,
        discriminator,
        expert_dataset,
        embedding_z,
        pretrained,
        pretrained_weight,
        *,
        g_step,
        d_step,
        timesteps_per_batch,  # what to train on
        max_kl,
        cg_iters,
        gamma,
        lam,  # advantage estimation
        entcoeff=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        d_stepsize=3e-4,
        vf_iters=3,
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        save_per_iter=100,
        ckpt_dir=None,
        log_dir=None,
        load_model_path=None,
        task_name=None):
    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi",
                     ob_space,
                     ac_space,
                     reuse=(pretrained_weight != None))
    oldpi = policy_func("oldpi", ob_space, ac_space)
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = U.mean(kloldnew)
    meanent = U.mean(ent)
    entbonus = entcoeff * meanent

    vferr = U.mean(tf.square(pi.vpred - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = U.mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("pol")
    ]
    vf_var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("vf")
    ]
    d_adam = MpiAdam(discriminator.get_trainable_variables())
    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n(
        [U.sum(g * tangent) for (g, tangent) in zipsame(klgrads, tangents)])  # pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    writer = U.FileWriter(log_dir)
    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    d_adam.sync()
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     discriminator,
                                     embedding=embedding_z,
                                     timesteps_per_batch=timesteps_per_batch,
                                     stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards
    true_rewbuffer = deque(maxlen=40)

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    g_loss_stats = stats(loss_names)
    d_loss_stats = stats(discriminator.loss_name)
    ep_stats = stats(["True_rewards", "Rewards", "Episode_length"])
    # if provide pretrained weight
    if pretrained_weight is not None:
        U.load_state(pretrained_weight, var_list=pi.get_variables())
    # if provieded model path
    if load_model_path is not None:
        U.load_state(load_model_path)

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break

        # Save model
        if iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            U.save_state(os.path.join(ckpt_dir, task_name),
                         counter=iters_so_far)

        logger.log("********** Iteration %i ************" % iters_so_far)

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        # ------------------ Update G ------------------
        logger.log("Optimizing Policy...")
        for _ in range(g_step):
            with timed("sampling"):
                seg = seg_gen.__next__()
            add_vtarg_and_adv(seg, gamma, lam)
            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
                "tdlamret"]
            vpredbefore = seg[
                "vpred"]  # predicted value function before udpate
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate

            if hasattr(pi, "ob_rms"):
                pi.ob_rms.update(ob)  # update running mean/std for policy

            args = seg["ob"], seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            assign_old_eq_new(
            )  # set old parameter values to new parameter values
            with timed("computegrad"):
                *lossbefore, g = compute_lossandgrad(*args)
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
                with timed("cg"):
                    stepdir = cg(fisher_vector_product,
                                 g,
                                 cg_iters=cg_iters,
                                 verbose=rank == 0)
                assert np.isfinite(stepdir).all()
                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / max_kl)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(
                        np.array(compute_losses(*args)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" %
                               (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > max_kl * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather(
                        (thnew.sum(),
                         vfadam.getflat().sum()))  # list of tuples
                    assert all(
                        np.allclose(ps, paramsums[0]) for ps in paramsums[1:])
            with timed("vf"):
                for _ in range(vf_iters):
                    for (mbob, mbret) in dataset.iterbatches(
                        (seg["ob"], seg["tdlamret"]),
                            include_final_partial_batch=False,
                            batch_size=128):
                        if hasattr(pi, "ob_rms"):
                            pi.ob_rms.update(
                                mbob)  # update running mean/std for policy
                        g = allmean(compute_vflossandgrad(mbob, mbret))
                        vfadam.update(g, vf_stepsize)

        g_losses = meanlosses
        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)
        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))
        # ------------------ Update D ------------------
        logger.log("Optimizing Discriminator...")
        logger.log(fmt_row(13, discriminator.loss_name))
        ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob))
        batch_size = len(ob) // d_step
        d_losses = [
        ]  # list of tuples, each of which gives the loss for a minibatch
        for ob_batch, ac_batch in dataset.iterbatches(
            (ob, ac), include_final_partial_batch=False,
                batch_size=batch_size):
            ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob_batch))
            # update running mean/std for discriminator
            if hasattr(discriminator, "obs_rms"):
                discriminator.obs_rms.update(
                    np.concatenate((ob_batch, ob_expert), 0))
            *newlosses, g = discriminator.lossandgrad(ob_batch, ac_batch,
                                                      ob_expert, ac_expert)
            d_adam.update(allmean(g), d_stepsize)
            d_losses.append(newlosses)
        logger.log(fmt_row(13, np.mean(d_losses, axis=0)))

        lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"]
                   )  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews, true_rets = map(flatten_lists, zip(*listoflrpairs))
        true_rewbuffer.extend(true_rets)
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpTrueRewMean", np.mean(true_rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank == 0:
            logger.dump_tabular()
            g_loss_stats.add_all_summary(writer, g_losses, iters_so_far)
            d_loss_stats.add_all_summary(writer, np.mean(d_losses, axis=0),
                                         iters_so_far)
            ep_stats.add_all_summary(writer, [
                np.mean(true_rewbuffer),
                np.mean(rewbuffer),
                np.mean(lenbuffer)
            ], iters_so_far)
Example #5
0
def learn(env, model_path, data_path, policy_fn, *,
          rolloutSize, num_options=4, horizon=80,
          clip_param=0.025, ent_coeff=0.01,  # clipping parameter epsilon, entropy coeff
          optim_epochs=10, mainlr=3.25e-4, intlr=1e-4, piolr=1e-4, termlr=5e-7, optim_batchsize=100,  # optimization hypers
          gamma=0.99, lam=0.95,  # advantage estimation
          max_iters=20,  # time constraint
          adam_epsilon=1e-5,
          schedule='constant',  # annealing for stepsize parameters (epsilon and adam)
          retrain=False,
          ):
    """
        Core learning function
    """
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_fn("pi", ob_space, ac_space, num_options=num_options)  # Construct network for new policy
    oldpi = policy_fn("oldpi", ob_space, ac_space, num_options=num_options)  # Network for old policy
    atarg = tf.placeholder(dtype=tf.float32, shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    lrmult = tf.placeholder(name='lrmult', dtype=tf.float32,
                            shape=[])  # learning rate multiplier, updated with schedule
    clip_param = clip_param * lrmult  # Annealed cliping parameter epislon

    ob = U.get_placeholder_cached(name="ob")
    option = U.get_placeholder_cached(name="option")
    term_adv = U.get_placeholder(name='term_adv', dtype=tf.float32, shape=[None])
    op_adv = tf.placeholder(dtype=tf.float32, shape=[None])  # Target advantage function (if applicable)
    betas = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ac = pi.pdtype.sample_placeholder([None])

    # Setup losses and stuff
    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    pol_entpen = (-ent_coeff) * meanent

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))  # pnew / pold
    surr1 = ratio * atarg  # surrogate from conservative policy iteration
    surr2 = tf.clip_by_value(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg  #
    pol_surr = - tf.reduce_mean(tf.minimum(surr1, surr2))  # PPO's pessimistic surrogate (L^CLIP)

    vf_loss = tf.reduce_mean(tf.square(pi.vpred - ret))
    total_loss = pol_surr + pol_entpen + vf_loss
    losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent]
    loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"]

    term_loss = pi.tpred * term_adv

    activated_options = tf.placeholder(dtype=tf.float32, shape=[None, num_options])
    pi_w = tf.placeholder(dtype=tf.float32, shape=[None, num_options])
    option_hot = tf.one_hot(option, depth=num_options)
    pi_I = (pi.intfc * activated_options) * pi_w / tf.expand_dims(
        tf.reduce_sum((pi.intfc * activated_options) * pi_w, axis=1), 1)
    pi_I = tf.clip_by_value(pi_I, 1e-6, 1 - 1e-6)
    int_loss = - tf.reduce_sum(betas * tf.reduce_sum(pi_I * option_hot, axis=1) * op_adv)

    intfc = tf.placeholder(dtype=tf.float32, shape=[None, num_options])
    pi_I = (intfc * activated_options) * pi.op_pi / tf.expand_dims(
        tf.reduce_sum((intfc * activated_options) * pi.op_pi, axis=1), 1)
    pi_I = tf.clip_by_value(pi_I, 1e-6, 1 - 1e-6)
    op_loss = - tf.reduce_sum(betas * tf.reduce_sum(pi_I * option_hot, axis=1) * op_adv)

    log_pi = tf.log(tf.clip_by_value(pi.op_pi, 1e-20, 1.0))
    op_entropy = -tf.reduce_mean(pi.op_pi * log_pi, reduction_indices=1)
    op_loss -= 0.01 * tf.reduce_sum(op_entropy)

    var_list = pi.get_trainable_variables()
    lossandgrad = U.function([ob, ac, atarg, ret, lrmult, option], losses + [U.flatgrad(total_loss, var_list)])
    termgrad = U.function([ob, option, term_adv],
                          [U.flatgrad(term_loss, var_list)])  # Since we will use a different step size.
    opgrad = U.function([ob, option, betas, op_adv, intfc, activated_options],
                        [U.flatgrad(op_loss, var_list)])  # Since we will use a different step size.
    intgrad = U.function([ob, option, betas, op_adv, pi_w, activated_options],
                         [U.flatgrad(int_loss, var_list)])  # Since we will use a different step size.
    adam = MpiAdam(var_list, epsilon=adam_epsilon)

    assign_old_eq_new = U.function([], [], updates=[tf.assign(oldv, newv)
                                                    for (oldv, newv) in
                                                    zipsame(oldpi.get_variables(), pi.get_variables())])
    compute_losses = U.function([ob, ac, atarg, ret, lrmult, option], losses)

    U.initialize()
    adam.sync()

    episodes_so_far = 0
    timesteps_so_far = 0
    global iters_so_far
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=5)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=5)  # rolling buffer for episode rewards

    datas = [0 for _ in range(num_options)]

    if retrain:
        print("Retraining to New Task !! ")
        time.sleep(2)
        U.load_state(model_path+'/')

    p = []
    max_timesteps = int(horizon * rolloutSize * max_iters)
    while True:
        if max_iters and iters_so_far >= max_iters:
            break

        if schedule == 'constant':
            cur_lrmult = 1.0
        elif schedule == 'linear':
            cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0)
        else:
            raise NotImplementedError

        logger.log("********** Iteration %i ************" % iters_so_far)
        render = False

        rollouts = sample_trajectory(pi, env, horizon=horizon, rolloutSize=rolloutSize, render=render)
        # Save rollouts
        data = {'rollouts': rollouts}
        p.append(data)
        del data
        data_file_name = data_path + 'rollout_data.pkl'
        pickle.dump(p, open(data_file_name, "wb"))

        add_vtarg_and_adv(rollouts, gamma, lam, num_options)

        opt_d = []
        for i in range(num_options):
            dur = np.mean(rollouts['opt_dur'][i]) if len(rollouts['opt_dur'][i]) > 0 else 0.
            opt_d.append(dur)

        ob, ac, opts, atarg, tdlamret = rollouts["ob"], rollouts["ac"], rollouts["opts"], rollouts["adv"], rollouts["tdlamret"]
        atarg = (atarg - atarg.mean()) / atarg.std()  # standardized advantage function estimate

        if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob)  # update running mean/std for policy
        assign_old_eq_new()  # set old parameter values to new parameter values

        # Optimizing the policy
        for opt in range(num_options):
            indices = np.where(opts == opt)[0]
            print("Option- ", opt, " Batch Size: ", indices.size)
            opt_d[opt] = indices.size
            if not indices.size:
                continue

            datas[opt] = d = Dataset(dict(ob=ob[indices], ac=ac[indices], atarg=atarg[indices], vtarg=tdlamret[indices]), shuffle=not pi.recurrent)

            if indices.size < optim_batchsize:
                print("Too few samples for opt - ", opt)
                continue

            optim_batchsize_corrected = optim_batchsize
            optim_epochs_corrected = np.clip(np.int(indices.size / optim_batchsize_corrected), 1, optim_epochs)
            print("Optim Epochs:", optim_epochs_corrected)
            logger.log("Optimizing...")
            # Here we do a bunch of optimization epochs over the data

            for _ in range(optim_epochs_corrected):
                losses = []  # list of tuples, each of which gives the loss for a minibatch
                for batch in d.iterate_once(optim_batchsize_corrected):
                    *newlosses, grads = lossandgrad(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"],
                                                    cur_lrmult, [opt])
                    adam.update(grads, mainlr * cur_lrmult)
                    losses.append(newlosses)

            # Optimize termination functions
            termg = termgrad(rollouts["ob"], rollouts['opts'], rollouts["op_adv"])[0]
            adam.update(termg, termlr)

            # Optimize interest functions
            intgrads = intgrad(rollouts['ob'], rollouts['opts'], rollouts["last_betas"], rollouts["op_adv"], rollouts["op_probs"], rollouts["activated_options"])[0]
            adam.update(intgrads, intlr)

        # Optimize policy over options
        opgrads = opgrad(rollouts['ob'], rollouts['opts'], rollouts["last_betas"], rollouts["op_adv"], rollouts["intfc"], rollouts["activated_options"])[0]
        adam.update(opgrads, piolr)

        lrlocal = (rollouts["ep_lens"], rollouts["ep_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        logger.record_tabular("Success", rollouts["success"])
        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1
        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if MPI.COMM_WORLD.Get_rank() == 0:
            logger.dump_tabular()

    return pi
def learn(env, model_path, data_path, policy_fn, model_learning_params, svm_grid_params, svm_params_interest,
          svm_params_guard, *, modes, rolloutSize, num_options=2,
          horizon,  # timesteps per actor per update
          clip_param, ent_coeff=0.02,  # clipping parameter epsilon, entropy coeff
          optim_epochs=10, optim_stepsize=3e-4, optim_batchsize=160,  # optimization hypers
          gamma=0.99, lam=0.95,  # advantage estimation
          max_iters=0,  # time constraint
          adam_epsilon=1.2e-4,
          schedule='linear',  # annealing for stepsize parameters (epsilon and adam)
          retrain=False
          ):
    """
        Core learning function
    """

    ob_space = env.observation_space
    ac_space = env.action_space
    if retrain:
        model = pickle.load(open(model_path + '/hybrid_model.pkl', 'rb'))
        print("Model graph:", model.transitionGraph.nodes)
        print("Model options:", model.transitionGraph.edges)
    else:
        model = partialHybridModel(env, model_learning_params, svm_grid_params, svm_params_interest, svm_params_guard, horizon, modes, num_options, rolloutSize)
    pi = policy_fn("pi", ob_space, ac_space, model, num_options)  # Construct network for new policy
    oldpi = policy_fn("oldpi", ob_space, ac_space, model, num_options)  # Network for old policy
    atarg = tf1.placeholder(dtype=tf1.float32, shape=[None])  # Target advantage function (if applicable)
    ret = tf1.placeholder(dtype=tf1.float32, shape=[None])  # Empirical return

    lrmult = tf1.placeholder(name='lrmult', dtype=tf1.float32,
                             shape=[])  # learning rate multiplier, updated with schedule
    clip_param = clip_param * lrmult  # Annealed cliping parameter epislon

    # Define placeholders for computing the advantage
    ob = U.get_placeholder_cached(name="ob")
    option = U.get_placeholder_cached(name="option")
    ac = pi.pdtype.sample_placeholder([None])

    # Defining losses for optimization
    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf1.reduce_mean(kloldnew)
    meanent = tf1.reduce_mean(ent)
    pol_entpen = (-ent_coeff) * meanent

    ratio = tf1.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))  # pnew / pold
    surr1 = ratio * atarg  # surrogate from conservative policy iteration
    surr2 = tf1.clip_by_value(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg  #
    pol_surr = - tf1.reduce_mean(tf1.minimum(surr1, surr2))  # PPO's pessimistic surrogate (L^CLIP), negative to convert from a maximization to minimization problem
    vf_loss = tf1.reduce_mean(tf1.square(pi.vpred - ret))
    total_loss = pol_surr + pol_entpen + vf_loss
    losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent]
    loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"]

    var_list = pi.get_trainable_variables()
    lossandgrad = U.function([ob, ac, atarg, ret, lrmult, option], losses + [U.flatgrad(total_loss, var_list)])
    adam = MpiAdam(var_list, epsilon=adam_epsilon)

    assign_old_eq_new = U.function([], [], updates=[tf1.assign(oldv, newv) for (oldv, newv) in
                                                    zipsame(oldpi.get_variables(), pi.get_variables())])
    compute_losses = U.function([ob, ac, atarg, ret, lrmult, option], losses)

    U.initialize()
    adam.sync()

    # Prepare for rollouts
    episodes_so_far = 0
    timesteps_so_far = 0
    global iters_so_far
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=10)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=10)  # rolling buffer for episode rewards

    p = []  # for saving the rollouts

    if retrain:
        print("Retraining to New Task !!")
        time.sleep(2)
        U.load_state(model_path+'/')
        print(pi.eps)
    max_timesteps = int(horizon * rolloutSize * max_iters)

    while True:
        if max_iters and iters_so_far >= max_iters:
            break
        if schedule == 'constant':
            cur_lrmult = 1.0
        elif schedule == 'linear':
            cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0)
        else:
            raise NotImplementedError

        logger.log("************* Iteration %i *************" % iters_so_far)
        print("Collecting samples for policy optimization !! ")
        render = False

        rollouts = sample_trajectory(pi, model, env, horizon=horizon, rolloutSize=rolloutSize, render=render)
        # Save rollouts
        data = {'rollouts': rollouts}
        p.append(data)
        del data
        data_file_name = data_path + '/rollout_data.pkl'
        pickle.dump(p, open(data_file_name, "wb"))

        # Model update
        print("Updating model !!\n")
        model.updateModel(rollouts, pi)
        print("Model graph:", model.transitionGraph.nodes)
        print("Model options:", model.transitionGraph.edges)
        edges = list(model.transitionGraph.edges)
        for i in range(0, len(edges)):
            print(edges[i][0], " -> ", edges[i][1], " : ", model.transitionGraph[edges[i][0]][edges[i][1]]['weight'])

        datas = [0 for _ in range(num_options)]
        add_vtarg_and_adv(rollouts, pi, gamma, lam, num_options)

        ob, ac, opts, atarg, tdlamret = rollouts["seg_obs"], rollouts["seg_acs"], rollouts["des_opts"], rollouts["adv"], rollouts["tdlamret"]
        old_opts = rollouts["seg_opts"]
        similarity = 0
        for i in range(0, len(old_opts)):
            if old_opts[i] == opts[i]:
                similarity += 1

        print("Percentage similarity of options: ", similarity/len(old_opts) * 100)

        vpredbefore = rollouts["vpreds"]  # predicted value function before udpate
        atarg = (atarg - atarg.mean()) / atarg.std()  # standardized advantage function estimate
        if hasattr(pi, "ob_rms"):
            pi.ob_rms.update(ob)  # update running mean/std for policy
        assign_old_eq_new()

        pi.eps = pi.eps * gamma #reduce exploration

        # Optimizing the policy
        print("\nOptimizing policy !! \n")
        for opt in range(num_options):
            indices = np.where(opts == opt)[0]
            print("Option- ", opt, " Batch Size: ", indices.size)
            if not indices.size:
                continue

            datas[opt] = d = Dataset(dict(ob=ob[indices], ac=ac[indices], atarg=atarg[indices], vtarg=tdlamret[indices]), shuffle=not pi.recurrent)

            if indices.size < optim_batchsize:
                print("Too few samples for opt - ", opt)
                continue

            optim_batchsize_corrected = optim_batchsize
            optim_epochs_corrected = np.clip(np.int(indices.size / optim_batchsize_corrected), 1, optim_epochs)
            print("Optim Epochs:", optim_epochs_corrected)
            logger.log("Optimizing...")
            # Here we do a bunch of optimization epochs over the data
            for _ in range(optim_epochs_corrected):
                losses = []  # list of tuples, each of which gives the loss for a minibatch
                for batch in d.iterate_once(optim_batchsize_corrected):
                    *newlosses, grads = lossandgrad(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult, [opt])
                    if np.isnan(newlosses).any():
                        continue
                    adam.update(grads, optim_stepsize * cur_lrmult)
                    losses.append(newlosses)
        if len(losses) > 0:
            meanlosses, _, _ = mpi_moments(losses, axis=0)
            print("Mean loss ", meanlosses)
            for (lossval, name) in zipsame(meanlosses, loss_names):
                logger.record_tabular("loss_" + name, lossval)

        lrlocal = (rollouts["ep_lens"], rollouts["ep_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        logger.record_tabular("Success", rollouts["success"])
        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1
        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if MPI.COMM_WORLD.Get_rank() == 0:
            logger.dump_tabular()

        '''
        if model_path and not retrain:
            U.save_state(model_path + '/')
            model_file_name = model_path + '/hybrid_model.pkl'
            pickle.dump(model, open(model_file_name, "wb"), pickle.HIGHEST_PROTOCOL)
            print("Policy and Model saved in - ", model_path)
        '''
    return pi, model
Example #7
0
def learn(encoder,
          action_decorder,
          state_decorder,
          embedding_shape,
          *,
          dataset,
          logdir,
          batch_size,
          time_steps,
          epsilon=0.001,
          lr_rate=1e-3):
    lstm_encoder = encoder("lstm_encoder")
    ac_decoder = action_decorder("ac_decoder")
    state_decoder = state_decorder("state_decoder")  #换成了mlp
    obs = U.get_placeholder_cached(name="obs")  ##for encoder

    ob = U.get_placeholder_cached(name="ob")
    embedding = U.get_placeholder_cached(name="embedding")

    # obss = U.get_placeholder_cached(name="obss")  ## for action decoder, 这个state decoder是不是也可以用, 是不是应该改成obs
    #   ## for action decoder, 这个state decoder应该也是可以用的
    # embeddingss = U.get_placeholder_cached(name="embeddingss")
    ac = ac_decoder.pdtype.sample_placeholder([None])
    obs_out = state_decoder.pdtype.sample_placeholder([None])

    # p(z) 标准正太分布, state先验分布???是不是应该换成demonstration的标准正态分布???? 可以考虑一下这个问题
    from common.distributions import make_pdtype

    p_z_pdtype = make_pdtype(embedding_shape)
    p_z_params = U.concatenate([
        tf.zeros(shape=[embedding_shape], name="mean"),
        tf.zeros(shape=[embedding_shape], name="logstd")
    ],
                               axis=-1)
    p_z = p_z_pdtype.pdfromflat(p_z_params)

    recon_loss = -tf.reduce_mean(
        tf.reduce_sum(ac_decoder.pd.logp(ac) + state_decoder.pd.logp(obs_out),
                      axis=0))  ##这个地方还要再改
    kl_loss = lstm_encoder.pd.kl(p_z)  ##p(z):标准正太分布, 这个看起来是不是也不太对!!!!
    vae_loss = recon_loss + kl_loss  ###vae_loss 应该是一个batch的

    ep_stats = stats(["recon_loss", "kl_loss", "vae_loss"])
    losses = [recon_loss, kl_loss, vae_loss]

    ## var_list
    var_list = []
    en_var_list = lstm_encoder.get_trainable_variables()
    var_list.extend(en_var_list)
    # ac_de_var_list = ac_decoder.get_trainable_variables()
    # var_list.extend(ac_de_var_list)
    state_de_var_list = state_decoder.get_trainable_variables()
    var_list.extend(state_de_var_list)
    # compute_recon_loss = U.function([ob, obs, embedding, obss, embeddingss, ac, obs_out], recon_loss)
    compute_losses = U.function([obs, ob, embedding, ac, obs_out], losses)
    compute_grad = U.function([obs, ob, embedding, ac, obs_out],
                              U.flatgrad(vae_loss,
                                         var_list))  ###这里没有想好!!!,可能是不对的!!
    adam = MpiAdam(var_list, epsilon=epsilon)

    U.initialize()
    adam.sync()

    writer = U.FileWriter(logdir)
    writer.add_graph(tf.get_default_graph())
    # =========================== TRAINING ===================== #
    iters_so_far = 0
    saver = tf.train.Saver(var_list=tf.trainable_variables(), max_to_keep=100)
    saver_encoder = tf.train.Saver(var_list=en_var_list, max_to_keep=100)
    # saver_pol = tf.train.Saver(var_list=ac_de_var_list, max_to_keep=100) ##保留一下policy的参数,但是这个好像用不到哎

    while True:
        logger.log("********** Iteration %i ************" % iters_so_far)

        recon_loss_buffer = deque(maxlen=100)
        kl_loss_buffer = deque(maxlen=100)
        vae_loss_buffer = deque(maxlen=100)

        for observations in dataset.get_next_batch(batch_size=time_steps):
            observations = observations.transpose((1, 0))
            embedding_now = lstm_encoder.get_laten_vector(observations)
            embeddings = np.array([embedding_now for _ in range(time_steps)])
            embeddings_reshape = embeddings.reshape((time_steps, -1))
            actions = ac_decoder.act(stochastic=True,
                                     ob=observations,
                                     embedding=embeddings_reshape)
            state_outputs = state_decoder.get_outputs(
                observations.reshape(time_steps, -1, 1),
                embeddings)  ##还没有加混合高斯......乱加了一通,已经加完了
            recon_loss, kl_loss, vae_loss = compute_losses(
                observations, observations.reshape(batch_size, time_steps,
                                                   -1), embeddings_reshape,
                observations.reshape(time_steps, -1, 1), embeddings, actions,
                state_outputs)

            g = compute_grad(observations,
                             observations.reshape(batch_size, time_steps,
                                                  -1), embeddings_reshape,
                             observations.reshape(time_steps, -1, 1),
                             embeddings, actions, state_outputs)
            adam.update(g, lr_rate)
            recon_loss_buffer.append(recon_loss)
            kl_loss_buffer.append(kl_loss)
            vae_loss_buffer.append(vae_loss)

        ep_stats.add_all_summary(writer, [
            np.mean(recon_loss_buffer),
            np.mean(kl_loss_buffer),
            np.mean(vae_loss_buffer)
        ], iters_so_far)
        logger.record_tabular("recon_loss", recon_loss)
        logger.record_tabular("kl_loss", kl_loss)
        logger.record_tabular("vae_loss", vae_loss)
        logger.dump_tabular()
        if (iters_so_far % 10 == 0 and iters_so_far != 0):
            save(saver=saver,
                 sess=tf.get_default_session(),
                 logdir=logdir,
                 step=iters_so_far)
            save(saver=saver_encoder,
                 sess=tf.get_default_session(),
                 logdir="./vae_saver",
                 step=iters_so_far)
            # save(saver=saver_pol, sess=tf.get_default_session(), logdir="pol_saver", step=iters_so_far)
        iters_so_far += 1
Example #8
0
def learn(env, encoder, action_decorder, state_decorder, embedding_shape,*, dataset, optimizer, logdir, batch_size, time_steps, adam_epsilon = 0.001, lr_rate = 1e-4, vae_beta = 8):
    lstm_encoder = encoder("lstm_encoder")
    ac_decoder = action_decorder("ac_decoder")
    state_decoder = state_decorder("state_decoder") #这个地方有问题
    ac_de_ob = U.get_placeholder_cached(name="ac_de_ob")
    en_ob = U.get_placeholder_cached(name="en_ob")  ##for encoder
    state_de_ob = U.get_placeholder_cached(name="state_de_ob")  ## for action decoder, 这个state decoder是不是也可以用, 是不是应该改成obs
    ac_de_embedding = U.get_placeholder_cached(name="ac_de_embedding")  ## for action decoder, 这个state decoder应该也是可以用的
    state_de_embedding = U.get_placeholder_cached(name="state_de_embedding")
    # ac = ac_decoder.pdtype.sample_placeholder([None])
    ob_next = tf.placeholder(name="ob_next", shape=[None, ob_shape], dtype=tf.float32)
    # ob_next_ac = tf.placeholder(name="ob_next_ac", shape=[ob_shape], dtype=tf.float32)
    # obs_out = state_decoder.pdtype.sample_placeholder([None])

    # p(z) 标准正太分布
    from common.distributions import make_pdtype

    p_z_pdtype = make_pdtype(embedding_shape)
    p_z_params = U.concatenate([tf.zeros(shape=[embedding_shape], name="mean"), tf.zeros(shape=[embedding_shape], name="logstd")], axis=-1)
    p_z = p_z_pdtype.pdfromflat(p_z_params)

    # recon_loss 里再加一个,对于action的

    recon_loss =  -tf.reduce_sum(state_decoder.pd.logp(ob_next))
    # kl_loss = lstm_encoder.pd.kl(p_z)[0] ##p(z):标准正太分布, 这个看起来是不是也不太对!!!!
    # kl_loss = tf.maximum(lstm_encoder.pd.kl(p_z)[0], tf.constant(5.00)) ##p(z):标准正太分布, 这个看起来是不是也不太对!!!!
    kl_loss = lstm_encoder.pd.kl(p_z)[0]
    vae_loss = tf.reduce_mean(recon_loss + vae_beta * kl_loss) ###vae_loss 应该是一个batch的

    ep_stats = stats(["recon_loss", "kl_loss", "vae_loss"])
    losses = [recon_loss, kl_loss, vae_loss]
    # 均方误差去训练 action,把得到的action step 一下,得到x(t+1),然后用均方误差loss,或者可以试试交叉熵


    ## var_list
    var_list = []
    en_var_list = lstm_encoder.get_trainable_variables()
    var_list.extend(en_var_list)
    # ac_de_var_list = ac_decoder.get_trainable_variables()
    # var_list.extend(ac_de_var_list)
    state_de_var_list = state_decoder.get_trainable_variables()
    var_list.extend(state_de_var_list)
    # compute_recon_loss = U.function([ob, obs, embedding, obss, embeddingss, ac, obs_out], recon_loss)
    compute_losses = U.function([en_ob, ac_de_ob, state_de_ob, ac_de_embedding, state_de_embedding, ob_next], losses)
    compute_grad = U.function([en_ob, ac_de_ob, state_de_ob, ac_de_embedding, state_de_embedding, ob_next], U.flatgrad(vae_loss, var_list)) ###这里没有想好!!!,可能是不对的!!
    adam = MpiAdam(var_list, epsilon=adam_epsilon)


    U.initialize()
    adam.sync()

    writer = U.FileWriter(logdir)
    writer.add_graph(tf.get_default_graph())
    # =========================== TRAINING ===================== #
    iters_so_far = 0
    saver = tf.train.Saver(var_list=var_list, max_to_keep=100)
    saver_encoder = tf.train.Saver(var_list = en_var_list, max_to_keep=100)
    # saver_pol = tf.train.Saver(var_list=ac_de_var_list, max_to_keep=100) ##保留一下policy的参数,但是这个好像用不到哎

    while iters_so_far < 50:
        ## 加多轮
        logger.log("********** Iteration %i ************" % iters_so_far)
        ## 要不要每一轮调整一下batch_size
        recon_loss_buffer = deque(maxlen=100)
        # recon_loss2_buffer = deque(maxlen=100)
        kl_loss_buffer = deque(maxlen=100)
        vae_loss_buffer = deque(maxlen=100)
        # i = 0
        for obs_and_next in dataset.get_next_batch(batch_size=time_steps):
            # print(i)
            # i += 1
            observations = obs_and_next[0].transpose((1, 0))[:-1]
            ob_next = obs_and_next[0].transpose(1, 0)[state_decoder.receptive_field:, :]
            embedding_now = lstm_encoder.get_laten_vector(obs_and_next[0].transpose((1, 0)))
            embeddings = np.array([embedding_now for _ in range(time_steps - 1)])
            embeddings_reshape = embeddings.reshape((time_steps-1, -1))
            actions = ac_decoder.act(stochastic=True, ob=observations, embedding=embeddings_reshape)
            ob_next_ac = get_ob_next_ac(env, observations[-1], actions[0]) ##这个还需要再修改 #########################################3
            # state_outputs = state_decoder.get_outputs(observations.reshape(1, time_steps, -1), embedding_now.reshape((1, 1, -1))) ##还没有加混合高斯......乱加了一通,已经加完了
            # recon_loss = state_decoder.recon_loss(observations.reshape(1, time_steps, -1), embedding_now.reshape((1, 1, -1)))
            recon_loss,  kl_loss, vae_loss = compute_losses(obs_and_next[0].transpose((1, 0)).reshape(1, time_steps, -1), observations.reshape(time_steps-1,-1),
                              observations.reshape(1, time_steps-1, -1), embeddings_reshape, embedding_now.reshape((1,1, -1)), ob_next)

            g = compute_grad(obs_and_next[0].transpose((1, 0)).reshape(1, time_steps, -1), observations.reshape(time_steps-1,-1),
                              observations.reshape(1, time_steps-1, -1), embeddings_reshape, embedding_now.reshape((1,1, -1)), ob_next)
            # logger.record_tabular("recon_loss", recon_loss)
            # logger.record_tabular("recon_loss2", recon_loss2)
            # logger.record_tabular("kl_loss", kl_loss)
            # logger.record_tabular("vae_loss", vae_loss)
            # logger.dump_tabular()
            adam.update(g, lr_rate)
            recon_loss_buffer.append(recon_loss)
            # recon_loss2_buffer.append(recon_loss2)
            kl_loss_buffer.append(kl_loss)
            vae_loss_buffer.append(vae_loss)
        ep_stats.add_all_summary(writer, [np.mean(recon_loss_buffer),  np.mean(kl_loss_buffer),
                                          np.mean(vae_loss_buffer)], iters_so_far)
        logger.record_tabular("recon_loss", recon_loss)
        # logger.record_tabular("recon_loss2", recon_loss2)
        logger.record_tabular("kl_loss", kl_loss)
        logger.record_tabular("vae_loss", vae_loss)
        logger.dump_tabular()
        if(iters_so_far % 10 == 0 and iters_so_far != 0):
            save(saver=saver, sess=tf.get_default_session(), logdir=logdir, step=iters_so_far)
            save(saver=saver_encoder, sess=tf.get_default_session(),logdir="./vae_saver", step=iters_so_far)
            # save(saver=saver_pol, sess=tf.get_default_session(), logdir="pol_saver", step=iters_so_far)
        iters_so_far += 1
        if iters_so_far < 6:
            lr_rate /= 2
Example #9
0
def learn(
        env,
        policy_func,
        discriminator,
        expert_dataset,
        timesteps_per_batch,
        *,
        g_step,
        d_step,  # timesteps per actor per update
        clip_param,
        entcoeff,  # clipping parameter epsilon, entropy coeff
        optim_epochs,
        optim_stepsize,
        optim_batchsize,  # optimization hypers
        gamma,
        lam,  # advantage estimation
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,
        max_seconds=0,  # time constraint
        callback=None,  # you can do anything in the callback, since it takes locals(), globals()
        adam_epsilon=1e-5,
        d_stepsize=3e-4,
        schedule='constant',  # annealing for stepsize parameters (epsilon and adam)
        save_per_iter=100,
        ckpt_dir=None,
        task="train",
        sample_stochastic=True,
        load_model_path=None,
        task_name=None,
        max_sample_traj=1500):
    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space,
                     ac_space)  # Construct network for new policy
    oldpi = policy_func("oldpi", ob_space, ac_space)  # Network for old policy
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    lrmult = tf.placeholder(
        name='lrmult', dtype=tf.float32,
        shape=[])  # learning rate multiplier, updated with schedule
    clip_param = clip_param * lrmult  # Annealed cliping parameter epislon

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = U.mean(kloldnew)
    meanent = U.mean(ent)
    pol_entpen = (-entcoeff) * meanent

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))  # pnew / pold
    surr1 = ratio * atarg  # surrogate from conservative policy iteration
    surr2 = U.clip(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg  #
    pol_surr = -U.mean(tf.minimum(
        surr1, surr2))  # PPO's pessimistic surrogate (L^CLIP)
    vf_loss = U.mean(tf.square(pi.vpred - ret))
    total_loss = pol_surr + pol_entpen + vf_loss
    losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent]
    loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"]

    var_list = pi.get_trainable_variables()
    lossandgrad = U.function([ob, ac, atarg, ret, lrmult],
                             losses + [U.flatgrad(total_loss, var_list)])
    d_adam = MpiAdam(discriminator.get_trainable_variables())
    adam = MpiAdam(var_list, epsilon=adam_epsilon)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg, ret, lrmult], losses)

    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    d_adam.sync()
    adam.sync()

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     discriminator,
                                     timesteps_per_batch,
                                     stochastic=True)
    traj_gen = traj_episode_generator(pi,
                                      env,
                                      timesteps_per_batch,
                                      stochastic=sample_stochastic)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=100)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=100)  # rolling buffer for episode rewards
    true_rewbuffer = deque(maxlen=100)

    assert sum(
        [max_iters > 0, max_timesteps > 0, max_episodes > 0,
         max_seconds > 0]) == 1, "Only one time constraint permitted"

    if task == 'sample_trajectory':
        # not elegant, i know :(
        sample_trajectory(load_model_path, max_sample_traj, traj_gen,
                          task_name, sample_stochastic)
        sys.exit()

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        elif max_seconds and time.time() - tstart >= max_seconds:
            break

        if schedule == 'constant':
            cur_lrmult = 1.0
        elif schedule == 'linear':
            cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0)
        else:
            raise NotImplementedError

        # Save model
        if iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            U.save_state(os.path.join(ckpt_dir, task_name),
                         counter=iters_so_far)

        logger.log("********** Iteration %i ************" % iters_so_far)
        for _ in range(g_step):
            seg = seg_gen.__next__()
            add_vtarg_and_adv(seg, gamma, lam)

            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
                "tdlamret"]
            vpredbefore = seg[
                "vpred"]  # predicted value function before udpate
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate
            d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vtarg=tdlamret),
                        shuffle=not pi.recurrent)
            optim_batchsize = optim_batchsize or ob.shape[0]

            if hasattr(pi, "ob_rms"):
                pi.ob_rms.update(ob)  # update running mean/std for policy

            assign_old_eq_new(
            )  # set old parameter values to new parameter values
            logger.log("Optimizing...")
            logger.log(fmt_row(13, loss_names))
            # Here we do a bunch of optimization epochs over the data
            for _ in range(optim_epochs):
                losses = [
                ]  # list of tuples, each of which gives the loss for a minibatch
                for batch in d.iterate_once(optim_batchsize):
                    *newlosses, g = lossandgrad(batch["ob"], batch["ac"],
                                                batch["atarg"], batch["vtarg"],
                                                cur_lrmult)
                    adam.update(g, optim_stepsize * cur_lrmult)
                    losses.append(newlosses)
                logger.log(fmt_row(13, np.mean(losses, axis=0)))

            logger.log("Evaluating losses...")
            losses = []
            for batch in d.iterate_once(optim_batchsize):
                newlosses = compute_losses(batch["ob"], batch["ac"],
                                           batch["atarg"], batch["vtarg"],
                                           cur_lrmult)
                losses.append(newlosses)
            meanlosses, _, _ = mpi_moments(losses, axis=0)

        # ------------------ Update D ------------------
        logger.log("Optimizing Discriminator...")
        logger.log(fmt_row(13, discriminator.loss_name))
        ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob))
        batch_size = len(ob) // d_step
        d_losses = [
        ]  # list of tuples, each of which gives the loss for a minibatch
        ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob))
        batch_size = len(ob) // d_step
        d_losses = [
        ]  # list of tuples, each of which gives the loss for a minibatch
        for ob_batch, ac_batch in dataset.iterbatches(
            (ob, ac), include_final_partial_batch=False,
                batch_size=batch_size):
            ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob_batch))
            # update running mean/std for discriminator
            if hasattr(discriminator, "obs_rms"):
                discriminator.obs_rms.update(
                    np.concatenate((ob_batch, ob_expert), 0))
            *newlosses, g = discriminator.lossandgrad(ob_batch, ac_batch,
                                                      ob_expert, ac_expert)
            d_adam.update(allmean(g), d_stepsize)
            d_losses.append(newlosses)
        logger.log(fmt_row(13, np.mean(d_losses, axis=0)))

        # ----------------- logger --------------------
        logger.log(fmt_row(13, meanlosses))
        for (lossval, name) in zipsame(meanlosses, loss_names):
            logger.record_tabular("loss_" + name, lossval)
        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))
        lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"]
                   )  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews, true_rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        true_rewbuffer.extend(true_rews)
        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpTrueRewMean", np.mean(true_rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1
        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if MPI.COMM_WORLD.Get_rank() == 0:
            logger.dump_tabular()
Example #10
0
def learn(
        env,
        policy_func,
        *,
        timesteps=4,
        timesteps_per_batch,  # timesteps per actor per update
        clip_param,
        entcoeff,  # clipping parameter epsilon, entropy coeff
        optim_epochs,
        optim_stepsize,
        optim_batchsize,  # optimization hypers
        gamma,
        lam,  # advantage estimation
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,
        max_seconds=0,  # time constraint
        callback=None,  # you can do anything in the callback, since it takes locals(), globals()
        adam_epsilon=1e-5,
        schedule='constant',  # annealing for stepsize parameters (epsilon and adam)
        save_per_iter=100,
        ckpt_dir=None,
        task="train",
        sample_stochastic=True,
        load_model_path=None,
        task_name=None,
        max_sample_traj=1500):
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", timesteps, ob_space,
                     ac_space)  # Construct network for new policy
    oldpi = policy_func("oldpi", timesteps, ob_space,
                        ac_space)  # Network for old policy
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return
    pi_vpred = tf.placeholder(dtype=tf.float32, shape=[None])
    lrmult = tf.placeholder(
        name='lrmult', dtype=tf.float32,
        shape=[])  # learning rate multiplier, updated with schedule
    clip_param = clip_param * lrmult  # Annealed cliping parameter epislon

    ob = U.get_placeholder_cached(name="ob")
    #    ob_now = tf.placeholder(dtype=tf.float32, shape=[optim_batchsize, list(ob_space.shape)[0]])
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = U.mean(kloldnew)
    meanent = U.mean(ent)
    pol_entpen = (-entcoeff) * meanent

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))  # pnew / pold
    surr1 = ratio * atarg  # surrogate from conservative policy iteration
    surr2 = U.clip(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg  #
    pol_surr = -U.mean(tf.minimum(
        surr1, surr2))  # PPO's pessimistic surrogate (L^CLIP)
    vf_loss = U.mean(tf.square(pi.vpred - ret))
    # total_loss = pol_surr + pol_entpen + vf_loss
    total_loss = pol_surr + pol_entpen
    losses = [pol_surr, pol_entpen, meankl, meanent]
    loss_names = ["pol_surr", "pol_entpen", "kl", "ent"]

    var_list = pi.get_trainable_variables()
    vf_var_list = [
        v for v in var_list if v.name.split("/")[1].startswith("vf")
    ]
    pol_var_list = [
        v for v in var_list if not v.name.split("/")[1].startswith("vf")
    ]
    #  lossandgrad = U.function([ob, ac, atarg ,ret, lrmult], losses + [U.flatgrad(total_loss, var_list)])
    lossandgrad = U.function([ob, ac, atarg, ret, lrmult],
                             losses + [U.flatgrad(total_loss, pol_var_list)])
    vf_grad = U.function([ob, ac, atarg, ret, lrmult],
                         U.flatgrad(vf_loss, vf_var_list))

    # adam = MpiAdam(var_list, epsilon=adam_epsilon)
    pol_adam = MpiAdam(pol_var_list, epsilon=adam_epsilon)
    vf_adam = MpiAdam(vf_var_list, epsilon=adam_epsilon)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg, ret, lrmult], losses)

    U.initialize()
    #adam.sync()
    pol_adam.sync()
    vf_adam.sync()

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     timesteps,
                                     env,
                                     timesteps_per_batch,
                                     stochastic=True)
    traj_gen = traj_episode_generator(pi,
                                      env,
                                      timesteps_per_batch,
                                      stochastic=sample_stochastic)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=100)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=100)  # rolling buffer for episode rewards
    EpRewMean_MAX = 2.5e3
    assert sum(
        [max_iters > 0, max_timesteps > 0, max_episodes > 0,
         max_seconds > 0]) == 1, "Only one time constraint permitted"

    if task == 'sample_trajectory':
        # not elegant, i know :(
        sample_trajectory(load_model_path, max_sample_traj, traj_gen,
                          task_name, sample_stochastic)
        sys.exit()

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        elif max_seconds and time.time() - tstart >= max_seconds:
            break

        if schedule == 'constant':
            cur_lrmult = 1.0
        elif schedule == 'linear':
            cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0)
        else:
            raise NotImplementedError

        # Save model
        if iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            U.save_state(os.path.join(ckpt_dir, task_name),
                         counter=iters_so_far)

        logger.log("********** Iteration %i ************" % iters_so_far)
        # if(iters_so_far == 1):
        #     a = 1
        seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, vpred, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "vpred"], seg["tdlamret"]
        vpredbefore = seg["vpred"]  # predicted value function before udpate
        atarg = (atarg - atarg.mean()
                 ) / atarg.std()  # standardized advantage function estimate
        d = Dataset(
            dict(ob=ob, ac=ac, atarg=atarg, vpred=vpred, vtarg=tdlamret),
            shuffle=False
        )  #d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vpred = vpred, vtarg=tdlamret), shuffle=not pi.recurrent)
        optim_batchsize = optim_batchsize or ob.shape[0]

        if hasattr(pi, "ob_rms"):
            pi.ob_rms.update(ob)  # update running mean/std for policy

        assign_old_eq_new()  # set old parameter values to new parameter values
        logger.log("Optimizing...")
        logger.log(fmt_row(13, loss_names))
        # Here we do a bunch of optimization epochs over the data
        for _ in range(optim_epochs):
            losses = [
            ]  # list of tuples, each of which gives the loss for a minibatch
            pre_obs = [seg["ob_reset"] for jmj in range(timesteps - 1)]
            for batch in d.iterate_once(optim_batchsize):
                ##feed ob, 重新处理一下ob,在batch["ob"]的最前面插入timesteps-1个env.reset的ob,然后滑动串口划分一下batch['ob]
                ob_now = np.append(pre_obs, batch['ob']).reshape(
                    optim_batchsize + timesteps - 1,
                    list(ob_space.shape)[0])
                pre_obs = ob_now[-(timesteps - 1):]
                ob_fin = []
                for jmj in range(optim_batchsize):
                    ob_fin.append(ob_now[jmj:jmj + timesteps])
                *newlosses, g = lossandgrad(ob_fin, batch["ac"],
                                            batch["atarg"], batch["vtarg"],
                                            cur_lrmult)  ###这里的g好像都是0
                #adam.update(g, optim_stepsize * cur_lrmult)
                pol_adam.update(g, optim_stepsize * cur_lrmult)
                vf_g = vf_grad(ob_fin, batch["ac"], batch["atarg"],
                               batch["vtarg"], cur_lrmult)
                vf_adam.update(vf_g, optim_stepsize * cur_lrmult)
                losses.append(newlosses)
            logger.log(fmt_row(13, np.mean(losses, axis=0)))

            pre_obs = [seg["ob_reset"] for jmj in range(timesteps - 1)]
            for batch in d.iterate_once(optim_batchsize):
                ##feed ob, 重新处理一下ob,在batch["ob"]的最前面插入timesteps-1个env.reset的ob,然后滑动串口划分一下batch['ob]
                ob_now = np.append(pre_obs, batch['ob']).reshape(
                    optim_batchsize + timesteps - 1,
                    list(ob_space.shape)[0])
                pre_obs = ob_now[-(timesteps - 1):]
                ob_fin = []
                for jmj in range(optim_batchsize):
                    ob_fin.append(ob_now[jmj:jmj + timesteps])
                *newlosses, g = lossandgrad(ob_fin, batch["ac"],
                                            batch["atarg"], batch["vtarg"],
                                            cur_lrmult)  ###这里的g好像都是0
                #adam.update(g, optim_stepsize * cur_lrmult)
                pol_adam.update(g, optim_stepsize * cur_lrmult)
                vf_g = vf_grad(ob_fin, batch["ac"], batch["atarg"],
                               batch["vtarg"], cur_lrmult)
                vf_adam.update(vf_g, optim_stepsize * cur_lrmult)

        logger.log("Evaluating losses...")
        losses = []
        loss_pre_obs = [seg["ob_reset"] for jmj in range(timesteps - 1)]
        for batch in d.iterate_once(optim_batchsize):
            ### feed ob
            ob_now = np.append(loss_pre_obs, batch['ob']).reshape(
                optim_batchsize + timesteps - 1,
                list(ob_space.shape)[0])
            loss_pre_obs = ob_now[-(timesteps - 1):]
            ob_fin = []
            for jmj in range(optim_batchsize):
                ob_fin.append(ob_now[jmj:jmj + timesteps])
            newlosses = compute_losses(ob_fin, batch["ac"], batch["atarg"],
                                       batch["vtarg"], cur_lrmult)
            losses.append(newlosses)
        meanlosses, _, _ = mpi_moments(losses, axis=0)
        logger.log(fmt_row(13, meanlosses))
        for (lossval, name) in zipsame(meanlosses, loss_names):
            logger.record_tabular("loss_" + name, lossval)
        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))
        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        if (np.mean(rewbuffer) > EpRewMean_MAX):
            EpRewMean_MAX = np.mean(rewbuffer)
            print(iters_so_far)
            print(np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1
        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if MPI.COMM_WORLD.Get_rank() == 0:
            logger.dump_tabular()