def __init__(self, env, id, args):
        super(ParallelNashAgent, self).__init__()
        self.id = id
        self.current_model = DQN(env, args).to(args.device)
        self.target_model = DQN(env, args).to(args.device)
        update_target(self.current_model, self.target_model)

        if args.load_model and os.path.isfile(args.load_model):
            self.load_model(model_path)

        self.epsilon_by_frame = epsilon_scheduler(args.eps_start,
                                                  args.eps_final,
                                                  args.eps_decay)
        self.replay_buffer = ParallelReplayBuffer(args.buffer_size)
        self.rl_optimizer = optim.Adam(self.current_model.parameters(),
                                       lr=args.lr)
def exploit(env,
            evaluated_model,
            exploiter,
            args,
            exploiter_path,
            num_agents=2):
    print(exploiter_path)
    [n0, n1] = env.agents  # agents name in one env, 2-player game
    epsilon_by_frame = epsilon_scheduler(args.eps_start, args.eps_final,
                                         args.eps_decay)

    evaluated_model_idx = 0
    exploiter_idx = 1
    reward_list, length_list, rl_loss_list = [], [], []
    last_epi_frame_idx = 0

    states = env.reset()
    for frame_idx in range(1, args.max_frames + 1):
        epsilon = epsilon_by_frame(frame_idx)
        # actions_ = evaluated_model.act(states.reshape(states.shape[0], -1), 0.)  # for more than 1 env
        eval_actions_ = evaluated_model.act(
            torch.FloatTensor(states).reshape(-1).unsqueeze(0),
            0.)[0]  # epsilon=0, greedy action
        exploiter_state = states[exploiter_idx]
        exploiter_action = exploiter.act(
            torch.FloatTensor(exploiter_state).to(args.device), epsilon)
        eval_action = eval_actions_[evaluated_model_idx]
        actions = {n0: eval_action, n1: exploiter_action}
        next_states, reward, done, _ = env.step(actions)
        exploiter_next_state = next_states[exploiter_idx]
        exploiter_reward = reward[exploiter_idx]
        reward_list.append(exploiter_reward)

        exploiter.push(exploiter_state, exploiter_action, exploiter_reward,
                       exploiter_next_state, done)
        states = next_states
        if args.render:
            env.render()
            # time.sleep(0.05)

        if done:
            length_list.append(frame_idx - last_epi_frame_idx)
            last_epi_frame_idx = frame_idx
            states = env.reset()

        if (len(exploiter.replay_buffer) > args.rl_start
                and frame_idx % args.train_freq == 0):
            loss = exploiter.update()
            rl_loss_list.append(loss)

        if frame_idx % args.update_target == 0:
            update_target(exploiter.model, exploiter.target)

        if frame_idx % args.evaluation_interval == 0:
            print(
                f"Frame: {frame_idx}, Avg. Reward: {np.mean(reward_list):.3f}, Avg. RL Loss: {np.mean(rl_loss_list):.3f}, Avg. Length: {np.mean(length_list):.1f}"
            )
            reward_list.clear(), length_list.clear()
            rl_loss_list.clear()

            exploiter.save_model(exploiter_path)
Example #3
0
def train(env, args, writer):
    p1_current_model = DQN(env, args).to(args.device)
    p1_target_model = DQN(env, args).to(args.device)
    update_target(p1_current_model, p1_target_model)
    p2_current_model = DQN(env, args).to(args.device)
    p2_target_model = DQN(env, args).to(args.device)
    update_target(p2_current_model, p2_target_model)

    if args.noisy:
        p1_current_model.update_noisy_modules()
        p1_target_model.update_noisy_modules()
        p2_current_model.update_noisy_modules()
        p2_target_model.update_noisy_modules()

    if args.load_model and os.path.isfile(args.load_model):
        load_model(p1_current_model, args, 1)
        load_model(p2_current_model, args, 2)

    epsilon_by_frame = epsilon_scheduler(args.eps_start, args.eps_final, args.eps_decay)
    beta_by_frame = beta_scheduler(args.beta_start, args.beta_frames)

    if args.prioritized_replay:
        p1_replay_buffer = PrioritizedReplayBuffer(args.buffer_size, args.alpha)
        p2_replay_buffer = PrioritizedReplayBuffer(args.buffer_size, args.alpha)
    else:
        p1_replay_buffer = ReplayBuffer(args.buffer_size)
        p2_replay_buffer = ReplayBuffer(args.buffer_size)
    
    p1_state_deque = deque(maxlen=args.multi_step)
    p2_state_deque = deque(maxlen=args.multi_step)
    p1_reward_deque = deque(maxlen=args.multi_step)
    p1_action_deque = deque(maxlen=args.multi_step)
    p2_reward_deque = deque(maxlen=args.multi_step)
    p2_action_deque = deque(maxlen=args.multi_step)

    p1_optimizer = optim.Adam(p1_current_model.parameters(), lr=args.lr)
    p2_optimizer = optim.Adam(p2_current_model.parameters(), lr=args.lr)

    length_list = []
    p1_reward_list, p1_loss_list = [], []
    p2_reward_list, p2_loss_list = [], []
    p1_episode_reward, p2_episode_reward = 0, 0
    episode_length = 0

    prev_time = time.time()
    prev_frame = 1

    (p1_state, p2_state) = env.reset()
    for frame_idx in range(1, args.max_frames + 1):
        if args.noisy:
            p1_current_model.sample_noise()
            p1_target_model.sample_noise()
            p2_current_model.sample_noise()
            p2_target_model.sample_noise()

        epsilon = epsilon_by_frame(frame_idx)
        p1_action = p1_current_model.act(torch.FloatTensor(p1_state).to(args.device), epsilon)
        p2_action = p2_current_model.act(torch.FloatTensor(p2_state).to(args.device), epsilon)

        if args.render:
            env.render()

        actions = {"1": p1_action, "2": p2_action}
        (p1_next_state, p2_next_state), reward, done, _ = env.step(actions)


        p1_state_deque.append(p1_state)
        p2_state_deque.append(p2_state)
        if args.negative:
            p1_reward_deque.append(reward[0] - 1)
        else:
            p1_reward_deque.append(reward[0])
        p1_action_deque.append(p1_action)
        if args.negative:
            p2_reward_deque.append(reward[1] - 1)
        else:
            p2_reward_deque.append(reward[1])
        p2_action_deque.append(p2_action)

        if len(p1_state_deque) == args.multi_step or done:
            n_reward = multi_step_reward(p1_reward_deque, args.gamma)
            n_state = p1_state_deque[0]
            n_action = p1_action_deque[0]
            p1_replay_buffer.push(n_state, n_action, n_reward, p1_next_state, np.float32(done))

            n_reward = multi_step_reward(p2_reward_deque, args.gamma)
            n_state = p2_state_deque[0]
            n_action = p2_action_deque[0]
            p2_replay_buffer.push(n_state, n_action, n_reward, p2_next_state, np.float32(done))

        (p1_state, p2_state) = (p1_next_state, p2_next_state)
        p1_episode_reward += (reward[0])
        p2_episode_reward += (reward[1])
        if args.negative:
            p1_episode_reward -= 1
            p2_episode_reward -= 1
        episode_length += 1

        if done or episode_length > args.max_episode_length:
            (p1_state, p2_state) = env.reset()
            p1_reward_list.append(p1_episode_reward)
            p2_reward_list.append(p2_episode_reward)
            length_list.append(episode_length)
            writer.add_scalar("data/p1_episode_reward", p1_episode_reward, frame_idx)
            writer.add_scalar("data/p2_episode_reward", p2_episode_reward, frame_idx)
            writer.add_scalar("data/episode_length", episode_length, frame_idx)
            p1_episode_reward, p2_episode_reward, episode_length = 0, 0, 0
            p1_state_deque.clear()
            p2_state_deque.clear()
            p1_reward_deque.clear()
            p2_reward_deque.clear()
            p1_action_deque.clear()
            p2_action_deque.clear()

        if len(p1_replay_buffer) > args.learning_start and frame_idx % args.train_freq == 0:
            beta = beta_by_frame(frame_idx)
            loss = compute_td_loss(p1_current_model, p1_target_model, p1_replay_buffer, p1_optimizer, args, beta)
            p1_loss_list.append(loss.item())
            writer.add_scalar("data/p1_loss", loss.item(), frame_idx)

            loss = compute_td_loss(p2_current_model, p2_target_model, p2_replay_buffer, p2_optimizer, args, beta)
            p2_loss_list.append(loss.item())
            writer.add_scalar("data/p2_loss", loss.item(), frame_idx)

        if frame_idx % args.update_target == 0:
            update_target(p1_current_model, p1_target_model)
            update_target(p2_current_model, p2_target_model)

        if frame_idx % args.evaluation_interval == 0:
            print_log(frame_idx, prev_frame, prev_time, p1_reward_list, length_list, p1_loss_list)
            print_log(frame_idx, prev_frame, prev_time, p2_reward_list, length_list, p2_loss_list)
            p1_reward_list.clear(), p2_reward_list.clear(), length_list.clear()
            p1_loss_list.clear(), p2_loss_list.clear()
            prev_frame = frame_idx
            prev_time = time.time()
            save_model(p1_current_model, args, 1)
            save_model(p2_current_model, args, 2)

    save_model(p1_current_model, args, 1)
    save_model(p2_current_model, args, 2)
Example #4
0
def train(env, args, writer):
    current_model = DQN(env, args).to(args.device)
    target_model = DQN(env, args).to(args.device)

    if args.noisy:
        current_model.update_noisy_modules()
        target_model.update_noisy_modules()

    if args.load_model:  # and os.path.isfile(args.load_model)
        load_model(current_model, args)
        load_model(target_model, args)

    epsilon_by_frame = epsilon_scheduler(args.eps_start, args.eps_final,
                                         args.eps_decay)
    beta_by_frame = beta_scheduler(args.beta_start, args.beta_frames)

    if args.prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(args.buffer_size, args.alpha)
    else:
        replay_buffer = ReplayBuffer(args.buffer_size)

    state_buffer = deque(maxlen=args.action_repeat)
    states_deque = [
        deque(maxlen=args.multi_step) for _ in range(args.num_agents)
    ]
    rewards_deque = [
        deque(maxlen=args.multi_step) for _ in range(args.num_agents)
    ]
    actions_deque = [
        deque(maxlen=args.multi_step) for _ in range(args.num_agents)
    ]

    optimizer = optim.Adam(current_model.parameters(), lr=args.lr)

    reward_list, length_list, loss_list = [], [], []
    episode_reward = 0
    episode_length = 0
    episode = 0

    prev_time = time.time()
    prev_frame = 1

    state, state_buffer = get_initial_state(env, state_buffer,
                                            args.action_repeat)
    for frame_idx in range(1, args.max_frames + 1):

        if args.noisy:
            current_model.sample_noise()
            target_model.sample_noise()

        epsilon = epsilon_by_frame(frame_idx)
        action = current_model.act(
            torch.FloatTensor(state).to(args.device), epsilon)

        next_state, reward, done, end = env.step(action,
                                                 save_screenshots=False)
        add_state(next_state, state_buffer)
        next_state = recent_state(state_buffer)

        for agent_index in range(len(done)):
            states_deque[agent_index].append((state[agent_index]))
            rewards_deque[agent_index].append(reward[agent_index])
            actions_deque[agent_index].append(action[agent_index])
            if len(states_deque[agent_index]
                   ) == args.multi_step or done[agent_index]:
                n_reward = multi_step_reward(rewards_deque[agent_index],
                                             args.gamma)
                n_state = states_deque[agent_index][0]
                n_action = actions_deque[agent_index][0]
                replay_buffer.push(n_state, n_action, n_reward,
                                   next_state[agent_index],
                                   np.float32(done[agent_index]))

        # delete the agents that have reached the goal
        r_index = 0
        for r in range(len(done)):
            if done[r] is True:
                state_buffer, states_deque, actions_deque, rewards_deque = del_record(
                    r_index, state_buffer, states_deque, actions_deque,
                    rewards_deque)
                r_index -= 1
            r_index += 1
        next_state = recent_state(state_buffer)

        state = next_state
        episode_reward += np.array(reward).mean()
        episode_length += 1

        if end:
            if args.save_video and episode % 10 == 0:
                evaluate(env, current_model, args)
            state, state_buffer = get_initial_state(env, state_buffer,
                                                    args.action_repeat)
            reward_list.append(episode_reward)
            length_list.append(episode_length)
            writer.add_scalar("data/episode_reward", episode_reward, frame_idx)
            writer.add_scalar("data/episode_length", episode_length, frame_idx)
            episode_reward, episode_length = 0, 0
            for d in range(len(states_deque)):
                states_deque[d].clear()
                rewards_deque[d].clear()
                actions_deque[d].clear()
            states_deque = [
                deque(maxlen=args.multi_step) for _ in range(args.num_agents)
            ]
            rewards_deque = [
                deque(maxlen=args.multi_step) for _ in range(args.num_agents)
            ]
            actions_deque = [
                deque(maxlen=args.multi_step) for _ in range(args.num_agents)
            ]
            episode += 1

        if len(replay_buffer
               ) > args.learning_start and frame_idx % args.train_freq == 0:
            beta = beta_by_frame(frame_idx)
            losses = 0
            for _ in range(1):
                loss = compute_td_loss(current_model, target_model,
                                       replay_buffer, optimizer, args, beta)
                losses += loss.item()
            loss_list.append(losses)
            writer.add_scalar("data/loss", loss.item(), frame_idx)

        if frame_idx % args.update_target == 0:
            update_target(current_model, target_model)

        if frame_idx % args.evaluation_interval == 0:
            print_log(frame_idx, prev_frame, prev_time, reward_list,
                      length_list, loss_list)
            reward_list.clear(), length_list.clear(), loss_list.clear()
            prev_frame = frame_idx
            prev_time = time.time()
            save_model(current_model, args)

    save_model(current_model, args)
Example #5
0
def train(env, args, writer, datetime):
    best_iou = -1.0
    if args.env in ['1DStatic', '1DDynamic']:
        current_model = DQN_1D(env, args).to(args.device)
        target_model = DQN_1D(env, args).to(args.device)
    elif args.env in ['2DStatic', '2DDynamic']:
        current_model = DQN_2D(env, args).to(args.device)
        target_model = DQN_2D(env, args).to(args.device)
    elif args.env in ['3DStatic', '3DDynamic']:
        current_model = DQN_3D(env, args).to(args.device)
        target_model = DQN_3D(env, args).to(args.device)

    if args.noisy:
        current_model.update_noisy_modules()
        target_model.update_noisy_modules()

    if args.load_model and os.path.isfile(args.load_model):
        load_model(current_model, args)

    epsilon_by_frame = epsilon_scheduler(args.eps_start, args.eps_final,
                                         args.eps_decay)
    beta_by_frame = beta_scheduler(args.beta_start, args.beta_frames)

    if args.prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(args.buffer_size, args.alpha)
    else:
        replay_buffer = ReplayBuffer(args.buffer_size)

    state_deque = deque(maxlen=args.multi_step)
    reward_deque = deque(maxlen=args.multi_step)
    action_deque = deque(maxlen=args.multi_step)

    optimizer = optim.Adam(current_model.parameters(), lr=args.lr)

    reward_list, length_list, loss_list = [], [], []
    episode_reward = 0
    episode_length = 0
    episode = 0

    prev_time = time.time()
    prev_frame = 1

    state = env.reset()
    for frame_idx in range(1, args.max_frames + 1):
        if args.render:
            env.render()

        if args.noisy:
            current_model.sample_noise()
            target_model.sample_noise()

        epsilon = epsilon_by_frame(frame_idx)
        if args.env in ['2DDynamic']:
            action = current_model.act(
                torch.FloatTensor(state).to(args.device), epsilon)
        else:
            action = current_model.act(
                torch.FloatTensor(state).to(args.device), epsilon)
        next_state, reward, done = env.step(action)
        state_deque.append(state)
        reward_deque.append(reward)
        action_deque.append(action)

        if len(state_deque) == args.multi_step or done:
            n_reward = multi_step_reward(reward_deque, args.gamma)
            n_state = state_deque[0]
            n_action = action_deque[0]
            replay_buffer.push(n_state, n_action, n_reward, next_state,
                               np.float32(done))

        state = next_state
        episode_reward += reward
        episode_length += 1

        if done:
            episode += 1

            state = env.reset()
            reward_list.append(episode_reward)
            length_list.append(episode_length)
            writer.add_scalar("Episode_reward/train", episode_reward, episode)
            writer.add_scalar("Episode_length/train", episode_length, episode)
            episode_reward = 0
            episode_length = 0
            state_deque.clear()
            reward_deque.clear()
            action_deque.clear()

        if len(replay_buffer
               ) > args.learning_start and frame_idx % args.train_freq == 0:
            beta = beta_by_frame(frame_idx)
            loss = compute_td_loss(current_model, target_model, replay_buffer,
                                   optimizer, args, beta)
            loss_list.append(loss.item())
            writer.add_scalar("Loss/train", loss.item(), frame_idx)

        if frame_idx % args.update_target == 0:
            update_target(current_model, target_model)

        if frame_idx % args.evaluation_interval == 0:
            print_log(frame_idx, prev_frame, prev_time, reward_list,
                      length_list, loss_list, args)
            reward_list.clear(), length_list.clear(), loss_list.clear()
            prev_frame = frame_idx
            prev_time = time.time()

            best_iou = test(env, args, current_model, best_iou, writer,
                            episode, datetime)
Example #6
0
def train(env, args):
    # Init WandB
    wandb.init(config=args)

    current_model = DQN(env, args).to(args.device)
    target_model = DQN(env, args).to(args.device)

    if args.noisy:
        current_model.update_noisy_modules()
        target_model.update_noisy_modules()

    if args.load_model and os.path.isfile(args.load_model):
        load_model(current_model, args)

    epsilon_by_frame = epsilon_scheduler(args.eps_start, args.eps_final,
                                         args.eps_decay)
    beta_by_frame = beta_scheduler(args.beta_start, args.beta_frames)

    if args.prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(args.buffer_size, args.alpha)
    else:
        replay_buffer = ReplayBuffer(args.buffer_size)

    state_deque = deque(maxlen=args.multi_step)
    reward_deque = deque(maxlen=args.multi_step)
    action_deque = deque(maxlen=args.multi_step)

    optimizer = optim.Adam(current_model.parameters(), lr=args.lr)

    reward_list, length_list, loss_list = [], [], []
    episode_reward = 0
    episode_length = 0

    prev_time = time.time()
    prev_frame = 1

    state = env.reset()
    for frame_idx in range(1, args.max_frames + 1):
        if args.render:
            env.render()

        if args.noisy:
            current_model.sample_noise()
            target_model.sample_noise()

        epsilon = epsilon_by_frame(frame_idx)
        action = current_model.act(
            torch.FloatTensor(state).to(args.device), epsilon)

        next_state, reward, done, _ = env.step(action)
        state_deque.append(state)
        reward_deque.append(reward)
        action_deque.append(action)

        if len(state_deque) == args.multi_step or done:
            n_reward = multi_step_reward(reward_deque, args.gamma)
            n_state = state_deque[0]
            n_action = action_deque[0]
            replay_buffer.push(n_state, n_action, n_reward, next_state,
                               np.float32(done))

        state = next_state
        episode_reward += reward
        episode_length += 1

        if done:
            state = env.reset()
            reward_list.append(episode_reward)
            length_list.append(episode_length)
            wandb.log({
                'episode_reward': episode_reward,
                'episode_length': episode_length,
            })
            episode_reward, episode_length = 0, 0
            state_deque.clear()
            reward_deque.clear()
            action_deque.clear()

        if len(replay_buffer
               ) > args.learning_start and frame_idx % args.train_freq == 0:
            beta = beta_by_frame(frame_idx)
            loss = compute_td_loss(current_model, target_model, replay_buffer,
                                   optimizer, args, beta)
            loss_list.append(loss.item())
            wandb.log({'loss': loss.item()})

        if frame_idx % args.update_target == 0:
            update_target(current_model, target_model)

        if frame_idx % args.evaluation_interval == 0:
            print_log(frame_idx, prev_frame, prev_time, reward_list,
                      length_list, loss_list)
            reward_list.clear(), length_list.clear(), loss_list.clear()
            prev_frame = frame_idx
            prev_time = time.time()
            save_model(current_model, args)

    save_model(current_model, args)
Example #7
0
def train(env, args, writer):
    # RL Model for Player 1
    p1_current_model = DQN(env, args).to(args.device)
    p1_target_model = DQN(env, args).to(args.device)
    update_target(p1_current_model, p1_target_model)

    # RL Model for Player 2
    p2_current_model = DQN(env, args).to(args.device)
    p2_target_model = DQN(env, args).to(args.device)
    update_target(p2_current_model, p2_target_model)

    # SL Model for Player 1, 2
    p1_policy = Policy(env).to(args.device)
    p2_policy = Policy(env).to(args.device)

    if args.load_model and os.path.isfile(args.load_model):
        load_model(models={
            "p1": p1_current_model,
            "p2": p2_current_model
        },
                   policies={
                       "p1": p1_policy,
                       "p2": p2_policy
                   },
                   args=args)

    epsilon_by_frame = epsilon_scheduler(args.eps_start, args.eps_final,
                                         args.eps_decay)

    # Replay Buffer for Reinforcement Learning - Best Response
    p1_replay_buffer = ReplayBuffer(args.buffer_size)
    p2_replay_buffer = ReplayBuffer(args.buffer_size)

    # Reservoir Buffer for Supervised Learning - Average Strategy
    # TODO(Aiden): How to set buffer size of SL?
    p1_reservoir_buffer = ReservoirBuffer(args.buffer_size)
    p2_reservoir_buffer = ReservoirBuffer(args.buffer_size)

    # Deque data structure for multi-step learning
    p1_state_deque = deque(maxlen=args.multi_step)
    p1_reward_deque = deque(maxlen=args.multi_step)
    p1_action_deque = deque(maxlen=args.multi_step)

    p2_state_deque = deque(maxlen=args.multi_step)
    p2_reward_deque = deque(maxlen=args.multi_step)
    p2_action_deque = deque(maxlen=args.multi_step)

    # RL Optimizer for Player 1, 2
    p1_rl_optimizer = optim.Adam(p1_current_model.parameters(), lr=args.lr)
    p2_rl_optimizer = optim.Adam(p2_current_model.parameters(), lr=args.lr)

    # SL Optimizer for Player 1, 2
    # TODO(Aiden): Is it necessary to seperate learning rate for RL/SL?
    p1_sl_optimizer = optim.Adam(p1_policy.parameters(), lr=args.lr)
    p2_sl_optimizer = optim.Adam(p2_policy.parameters(), lr=args.lr)

    # Logging
    length_list = []
    p1_reward_list, p1_rl_loss_list, p1_sl_loss_list = [], [], []
    p2_reward_list, p2_rl_loss_list, p2_sl_loss_list = [], [], []
    p1_episode_reward, p2_episode_reward = 0, 0
    tag_interval_length = 0
    prev_time = time.time()
    prev_frame = 1

    # Main Loop
    (p1_state, p2_state) = env.reset()
    for frame_idx in range(1, args.max_frames + 1):
        is_best_response = False
        # TODO(Aiden):
        # Action should be decided by a combination of Best Response and Average Strategy
        if random.random() > args.eta:
            p1_action = p1_policy.act(
                torch.FloatTensor(p1_state).to(args.device))
            p2_action = p2_policy.act(
                torch.FloatTensor(p1_state).to(args.device))
        else:
            is_best_response = True
            epsilon = epsilon_by_frame(frame_idx)
            p1_action = p1_current_model.act(
                torch.FloatTensor(p1_state).to(args.device), epsilon)
            p2_action = p2_current_model.act(
                torch.FloatTensor(p2_state).to(args.device), epsilon)

        actions = {"1": p1_action, "2": p2_action}
        (p1_next_state, p2_next_state), reward, done, info = env.step(actions)
        # print(actions)  # {'1': 3, '2': 2}
        # print(p1_next_state) # [[[127 127 .....
        #print(reward, done, info) # [0 0] False None

        # Save current state, reward, action to deque for multi-step learning
        p1_state_deque.append(p1_state)
        p2_state_deque.append(p2_state)

        p1_reward = reward[0] - 1 if args.negative else reward[0]
        p2_reward = reward[1] - 1 if args.negative else reward[1]
        p1_reward_deque.append(p1_reward)
        p2_reward_deque.append(p2_reward)

        p1_action_deque.append(p1_action)
        p2_action_deque.append(p2_action)

        # Store (state, action, reward, next_state) to Replay Buffer for Reinforcement Learning
        if len(p1_state_deque) == args.multi_step or done:
            n_reward = multi_step_reward(p1_reward_deque, args.gamma)
            n_state = p1_state_deque[0]
            n_action = p1_action_deque[0]
            p1_replay_buffer.push(n_state, n_action, n_reward, p1_next_state,
                                  np.float32(done))

            n_reward = multi_step_reward(p2_reward_deque, args.gamma)
            n_state = p2_state_deque[0]
            n_action = p2_action_deque[0]
            p2_replay_buffer.push(n_state, n_action, n_reward, p2_next_state,
                                  np.float32(done))

        # Store (state, action) to Reservoir Buffer for Supervised Learning
        if is_best_response:
            p1_reservoir_buffer.push(p1_state, p1_action)
            p2_reservoir_buffer.push(p2_state, p2_action)

        (p1_state, p2_state) = (p1_next_state, p2_next_state)

        # Logging
        p1_episode_reward += p1_reward
        p2_episode_reward += p2_reward
        tag_interval_length += 1

        if info is not None:
            length_list.append(tag_interval_length)
            tag_interval_length = 0

        # Episode done. Reset environment and clear logging records
        if done or tag_interval_length >= args.max_tag_interval:
            (p1_state, p2_state) = env.reset()
            p1_reward_list.append(p1_episode_reward)
            p2_reward_list.append(p2_episode_reward)
            writer.add_scalar("p1/episode_reward", p1_episode_reward,
                              frame_idx)
            writer.add_scalar("p2/episode_reward", p2_episode_reward,
                              frame_idx)
            writer.add_scalar("data/tag_interval_length", tag_interval_length,
                              frame_idx)
            p1_episode_reward, p2_episode_reward, tag_interval_length = 0, 0, 0
            p1_state_deque.clear(), p2_state_deque.clear()
            p1_reward_deque.clear(), p2_reward_deque.clear()
            p1_action_deque.clear(), p2_action_deque.clear()

        if (len(p1_replay_buffer) > args.rl_start
                and len(p1_reservoir_buffer) > args.sl_start
                and frame_idx % args.train_freq == 0):

            # Update Best Response with Reinforcement Learning
            loss = compute_rl_loss(p1_current_model, p1_target_model,
                                   p1_replay_buffer, p1_rl_optimizer, args)
            p1_rl_loss_list.append(loss.item())
            writer.add_scalar("p1/rl_loss", loss.item(), frame_idx)

            loss = compute_rl_loss(p2_current_model, p2_target_model,
                                   p2_replay_buffer, p2_rl_optimizer, args)
            p2_rl_loss_list.append(loss.item())
            writer.add_scalar("p2/rl_loss", loss.item(), frame_idx)

            # Update Average Strategy with Supervised Learning
            loss = compute_sl_loss(p1_policy, p1_reservoir_buffer,
                                   p1_sl_optimizer, args)
            p1_sl_loss_list.append(loss.item())
            writer.add_scalar("p1/sl_loss", loss.item(), frame_idx)

            loss = compute_sl_loss(p2_policy, p2_reservoir_buffer,
                                   p2_sl_optimizer, args)
            p2_sl_loss_list.append(loss.item())
            writer.add_scalar("p2/sl_loss", loss.item(), frame_idx)

        if frame_idx % args.update_target == 0:
            update_target(p1_current_model, p1_target_model)
            update_target(p2_current_model, p2_target_model)

        # Logging and Saving models
        if frame_idx % args.evaluation_interval == 0:
            print_log(frame_idx, prev_frame, prev_time,
                      (p1_reward_list, p2_reward_list), length_list,
                      (p1_rl_loss_list, p2_rl_loss_list),
                      (p1_sl_loss_list, p2_sl_loss_list))
            p1_reward_list.clear(), p2_reward_list.clear(), length_list.clear()
            p1_rl_loss_list.clear(), p2_rl_loss_list.clear()
            p1_sl_loss_list.clear(), p2_sl_loss_list.clear()
            prev_frame = frame_idx
            prev_time = time.time()
            save_model(models={
                "p1": p1_current_model,
                "p2": p2_current_model
            },
                       policies={
                           "p1": p1_policy,
                           "p2": p2_policy
                       },
                       args=args)

        # Render if rendering argument is on
        if args.render:
            env.render()

        save_model(models={
            "p1": p1_current_model,
            "p2": p2_current_model
        },
                   policies={
                       "p1": p1_policy,
                       "p2": p2_policy
                   },
                   args=args)
Example #8
0
def train(env, args, writer):
    current_model = DQN(env, args).to(args.device)
    target_model = DQN(env, args).to(args.device)

    for para in target_model.parameters():
        para.requires_grad = False

    if args.noisy:
        current_model.update_noisy_modules()
        target_model.update_noisy_modules()
    #target_model.eval()

    if args.load_model and os.path.isfile(args.load_model):
        load_model(current_model, args)

    update_target(current_model, target_model)
    epsilon_by_frame = epsilon_scheduler(args.eps_start, args.eps_final,
                                         args.eps_decay)
    beta_by_frame = beta_scheduler(args.beta_start, args.beta_frames)

    if args.prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(args.buffer_size, args.alpha)
        args.buffer_size = replay_buffer.it_capacity
    else:
        replay_buffer = ReplayBuffer(args.buffer_size)

    print_args(args)
    state_deque = deque(maxlen=args.multi_step)
    reward_deque = deque(maxlen=args.multi_step)
    action_deque = deque(maxlen=args.multi_step)

    if args.optim == 'adam':
        optimizer = optim.Adam(current_model.parameters(),
                               lr=args.lr,
                               eps=args.adam_eps,
                               betas=(0.9, args.beta2))
    elif args.optim == 'laprop':
        optimizer = laprop.LaProp(current_model.parameters(),
                                  lr=args.lr,
                                  betas=(0.9, args.beta2))

    reward_list, length_list, loss_list = [], [], []
    episode_reward = 0.
    episode_length = 0

    prev_time = time.time()
    prev_frame = 1

    state = env.reset()
    evaluation_interval = args.evaluation_interval
    for frame_idx in range(1, args.max_frames + 1):
        if args.render:
            env.render()

        if args.noisy:
            current_model.sample_noise()
            target_model.sample_noise()

        epsilon = epsilon_by_frame(frame_idx)
        action = current_model.act(
            torch.FloatTensor(state).to(args.device), epsilon)

        next_state, raw_reward, done, _ = env.step(action)
        if args.clip_rewards:
            reward = np.clip(raw_reward, -1., 1.)
        else:
            reward = raw_reward
        state_deque.append(state)
        reward_deque.append(reward)
        action_deque.append(action)

        if len(state_deque) == args.multi_step or done:
            n_reward = multi_step_reward(reward_deque, args.gamma)
            n_state = state_deque[0]
            n_action = action_deque[0]
            replay_buffer.push(n_state, n_action, n_reward, next_state,
                               np.float32(done))

        state = next_state
        episode_reward += raw_reward
        episode_length += 1

        if episode_length >= 9950:
            while not done:
                _, _, done, _ = env.step(random.randrange(env.action_space.n))

        if done:
            state = env.reset()
            reward_list.append(episode_reward)
            length_list.append(episode_length)
            if episode_length > 10000:
                print('{:.2f}'.format(episode_reward), end='')
            writer.add_scalar("data/episode_reward", episode_reward, frame_idx)
            writer.add_scalar("data/episode_length", episode_length, frame_idx)
            episode_reward, episode_length = 0., 0
            state_deque.clear()
            reward_deque.clear()
            action_deque.clear()

        if len(replay_buffer
               ) > args.learning_start and frame_idx % args.train_freq == 0:
            beta = beta_by_frame(frame_idx)
            loss = compute_td_loss(current_model, target_model, replay_buffer,
                                   optimizer, args, beta)
            loss_list.append(loss.item())
            writer.add_scalar("data/loss", loss.item(), frame_idx)

        if frame_idx % args.update_target == 0:
            update_target(current_model, target_model)

        if frame_idx % evaluation_interval == 0:
            if len(length_list) > 0:
                print_log(frame_idx, prev_frame, prev_time, reward_list,
                          length_list, loss_list, args)
                reward_list.clear(), length_list.clear(), loss_list.clear()
                prev_frame = frame_idx
                prev_time = time.time()
                save_model(current_model, args)
            else:
                evaluation_interval += args.evaluation_interval
        if frame_idx % 200000 == 0:
            if args.adam_eps == 1.5e-4:
                save_model(current_model,
                           args,
                           name="{}_{}".format(args.optim, frame_idx))
            else:
                save_model(current_model,
                           args,
                           name="{}{:.2e}_{}".format(args.optim, args.adam_eps,
                                                     frame_idx))

    reward_list.append(episode_reward)
    length_list.append(episode_length)
    print_log(frame_idx, prev_frame, prev_time, reward_list, length_list,
              loss_list, args)
    reward_list.clear(), length_list.clear(), loss_list.clear()
    prev_frame = frame_idx
    prev_time = time.time()

    save_model(current_model, args)