Example #1
0
 def make_label_values(self, _data_dfconf_list, _df_csv_read):
     """ label의 Unique Value를 DataConf에 넣어줌
     Args:
       params:
         * _data_dfconf_list : nnid의 wf정보 
         * _df_csv_read : Dataframe(train, eval)
     Returns:
       _label : label 항목 값
       _labe_type : label type
     """
     _key = _data_dfconf_list
     _nnid = _key.split('_')[0]
     _ver = _key.split('_')[1]
     _node = 'dataconf_node'
     _wf_data_conf = wf_data_conf(_key)
     if hasattr(_wf_data_conf, 'label') == True:
         _label = _wf_data_conf.label
         _labe_type = _wf_data_conf.label_type
         origin_labels_list = _wf_data_conf.label_values if hasattr(
             _wf_data_conf,
             'label_values') else list()  # 처음 입려할때 라벨벨류가 없으면 빈 리스트 넘김
         compare_labels_list = self.set_dataconf_for_labels(
             _df_csv_read, _label)
         self.combined_label_list = utils.get_combine_label_list(
             origin_labels_list,
             compare_labels_list)  # 리스트를 합친다음 DB에 업데이트 한다.
         _data_conf = dict()
         _data_conf['label_values'] = self.combined_label_list
         if _labe_type == 'CONTINUOUS':
             _data_conf['label_values'] = list()
         _wf_data_conf.put_step_source(_nnid, _ver, _node, _data_conf)
     return _label, _labe_type
Example #2
0
 def make_label_values(self, _data_dfconf_list, _df_csv_read):
     """ label의 Unique Value를 DataConf에 넣어줌
     Args:
       params:
         * _data_dfconf_list : nnid의 wf정보 
         * _df_csv_read : Dataframe(train, eval)
     Returns:
       _label : label 항목 값
       _labe_type : label type
     """
     _key = _data_dfconf_list
     _nnid = _key.split('_')[0]
     _ver = _key.split('_')[1]
     _node = 'dataconf_node'
     _wf_data_conf = wf_data_conf(_key)
     if hasattr(_wf_data_conf, 'label') == True:
         _label = _wf_data_conf.label
         _labe_type = _wf_data_conf.label_type
         origin_labels_list = _wf_data_conf.label_values if hasattr(_wf_data_conf,
                                                                    'label_values') else list()  # 처음 입려할때 라벨벨류가 없으면 빈 리스트 넘김
         compare_labels_list = self.set_dataconf_for_labels(_df_csv_read, _label)
         self.combined_label_list = utils.get_combine_label_list(origin_labels_list, compare_labels_list)    # 리스트를 합친다음 DB에 업데이트 한다.
         _data_conf = dict()
         _data_conf['label_values'] = self.combined_label_list
         if _labe_type == 'CONTINUOUS':
             _data_conf['label_values'] = list()
         _wf_data_conf.put_step_source(_nnid, _ver, _node, _data_conf)
     return _label, _labe_type
Example #3
0
    def set_dataconf_for_checktype(self, df, node_id, data_dfconf_list):
        """
        csv를 읽고 column type을 계산하여 data_conf에 저장(data_conf가 비어있을때 )
        카테고리 컬럼은 Unique 한 값을 구해서 cell_feature_unique에 넣어줌(Keras용)
        
        :param wf_data_config, df, nnid, ver, node:
        :param conf_data:
        """
        try:
            #TODO : set_default_dataconf_from_csv 파라미터 정리 필요
            data_conf = dict()
            data_conf_unique_v = dict()
            data_conf_col_unique_v = dict()
            data_conf_col_type = dict()

            numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']

            # Wdnn인경우 data_dfconf가 무조껀 한개만 존재 하므로 아래와 같은 로직이 가능
            if len(data_dfconf_list) > 0:
                _wf_data_conf = wf_data_conf(data_dfconf_list)
                #_cell_feature = _wf_data_conf.cell_feature if hasattr(_wf_data_conf,'cell_feature') else list() #처음 입려할때 라벨벨류가 없으면 빈 리스트 넘김
                _cell_feature_unique = _wf_data_conf.cell_feature_unique if hasattr(_wf_data_conf,
                                                                      'cell_feature_unique') else list()  # 처음 입려할때 라벨벨류가 없으면 빈 리스트 넘김
            for i, v in df.dtypes.iteritems():
                # label
                column_dtypes = dict()
                column_unique_value = dict()
                col_type = ''
                if (str(v) in numerics):  # maybe need float
                    col_type = 'CONTINUOUS'
                    columns_unique_value = list()
                else:
                    col_type = 'CATEGORICAL'
                    #columns_unique_value = pd.unique(df[i].values.ravel()).tolist()  # null처리 해야함
                    columns_unique_value = pd.unique(df[i].fillna('').values.ravel()).tolist()  # null처리 해야함
                column_dtypes['column_type'] = col_type

                #원래 가지고 있던 카테고리 컬럼별 유일한 값
                origin_feature_unique = _cell_feature_unique[i].get('column_u_values') if (i in _cell_feature_unique) else list()
                combined_col_u_list = utils.get_combine_label_list(origin_feature_unique, columns_unique_value)
                #읽어와서 추가되면 뒤에 붙여준다.
                column_unique_value['column_u_values'] = combined_col_u_list

                data_conf_col_type[i] = column_dtypes
                data_conf_col_unique_v[i] = column_unique_value
            data_conf['cell_feature'] = data_conf_col_type
            data_conf_unique_v['cell_feature_unique'] = data_conf_col_unique_v

            #json으로 바꿔줌
            data_conf_json_str = json.dumps(data_conf)
            data_conf_json = json.loads(data_conf_json_str)
            data_conf_unique_json_str = json.dumps(data_conf_unique_v)
            data_conf_unique_json = json.loads(data_conf_unique_json_str)

            return data_conf_json, data_conf_unique_json
        except Exception as e:
            logging.error("set_dataconf_for_checktype {0} {1}".format(e, e.__traceback__.tb_lineno))
Example #4
0
 def set_dataconf_for_checktype(self, df, node_id, data_dfconf_list):
     """
     csv를 읽고 column type을 계산하여 data_conf에 저장(data_conf가 비어있을때 )
     카테고리 컬럼은 Unique 한 값을 구해서 cell_feature_unique에 넣어줌(Keras용)
     
     :param wf_data_config, df, nnid, ver, node:
     :param conf_data:
     """
     try:
         #TODO : set_default_dataconf_from_csv 파라미터 정리 필요
         data_conf = dict()
         data_conf_unique_v = dict()
         data_conf_col_unique_v = dict()
         data_conf_col_type = dict()
         numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
         # Wdnn인경우 data_dfconf가 무조껀 한개만 존재 하므로 아래와 같은 로직이 가능
         if len(data_dfconf_list) > 0:
             _wf_data_conf = wf_data_conf(data_dfconf_list)
             _cell_feature_unique = _wf_data_conf.cell_feature_unique if hasattr(_wf_data_conf,
                                                                   'cell_feature_unique') else list()  # 처음 입려할때 라벨벨류가 없으면 빈 리스트 넘김
         for i, v in df.dtypes.iteritems():
             # label
             column_dtypes = dict()
             column_unique_value = dict()
             if (str(v) in numerics):  # maybe need float
                 col_type = 'CONTINUOUS'
                 columns_unique_value = list()
             else:
                 col_type = 'CATEGORICAL'
                 columns_unique_value = pd.unique(df[i].fillna('').values.ravel()).tolist()  # null처리 해야함
             column_dtypes['column_type'] = col_type
             origin_feature_unique = _cell_feature_unique[i].get('column_u_values') if (i in _cell_feature_unique) else list()
             combined_col_u_list = utils.get_combine_label_list(origin_feature_unique, columns_unique_value)
             column_unique_value['column_u_values'] = combined_col_u_list    #읽어와서 추가되면 뒤에 붙여준다.
             data_conf_col_type[i] = column_dtypes
             data_conf_col_unique_v[i] = column_unique_value
         data_conf['cell_feature'] = data_conf_col_type
         data_conf_unique_v['cell_feature_unique'] = data_conf_col_unique_v
         data_conf_json_str = json.dumps(data_conf)  #Json으로 바꿔줌
         data_conf_json = json.loads(data_conf_json_str)
         data_conf_unique_json_str = json.dumps(data_conf_unique_v)
         data_conf_unique_json = json.loads(data_conf_unique_json_str)
         return data_conf_json, data_conf_unique_json
     except Exception as e:
         logging.error("set_dataconf_for_checktype {0} {1}".format(e, e.__traceback__.tb_lineno))
Example #5
0
    def src_local_handler(self, conf_data):
        """
        Make h5 & tfrecord for multi treading

        Arguments:
            conf_data : data_source_path. etc
        """
        try:
            logging.info("Data node starting : {0}".format(conf_data['node_id']))
            fp_list = utils.get_filepaths(self.data_src_path, file_type='csv')
            _multi_node_flag = self.multi_node_flag

            eval_data = dict((_i, _k) for _i, _k in self.cls_list.items() if 'evaldata' in _i)

            try:
                #data conf node id 찾기
                data_conf_node_id = ''
                for _i, _k in self.cls_list.items():
                    if 'dataconf' in _i:
                        data_conf_node_id = _i
                        #eval 카테고리 데이터를 가져 오기 위해서 필요 Evalnode가 실행할때는 필요 없음
                        if 'data_node' not in conf_data['node_id']:
                            self.get_eval_node_file_list(conf_data)

                data_dfconf_list = data_conf_node_id

                for file_path in fp_list:
                    df_csv_read = self.load_csv_by_pandas(file_path)

                    if 'dataconf' in data_dfconf_list:
                        self.data_conf = self.make_column_types(df_csv_read, conf_data['node_id'], data_conf_node_id) # make columns type of csv
                        #eval 것도 같이 가져와서 unique value를 구해야함

                    #self.make_unique_value_each_column(df_csv_read,conf_data['node_id'])
                    self.create_hdf5(self.data_store_path, df_csv_read)
                    #Todo 뽑아서 함수화 시킬것
                    #for wdnn
                    #Wdnn인경우 data_dfconf가 무조껀 한개만 존재 하므로 아래와 같은 로직이 가능
                    if len(data_dfconf_list) > 0:
                        #Todo 정리가능

                        _key =data_dfconf_list
                        _nnid = _key.split('_')[0]
                        _ver = _key.split('_')[1]
                        _node  = 'dataconf_node'
                        _wf_data_conf = wf_data_conf(_key)
                        if hasattr(_wf_data_conf,'label') == True:
                            # label check
                            _label = _wf_data_conf.label
                            _labe_type = _wf_data_conf.label_type
                            origin_labels_list = _wf_data_conf.label_values if hasattr(_wf_data_conf,'label_values') else list() #처음 입려할때 라벨벨류가 없으면 빈 리스트 넘김
                            compare_labels_list = self.set_dataconf_for_labels(df_csv_read,_label)
                            self.combined_label_list = utils.get_combine_label_list(origin_labels_list,compare_labels_list )
                            #리스트를 합친다음 DB에 업데이트 한다.
                            _data_conf = dict()
                            _data_conf['label_values'] = self.combined_label_list
                            if _labe_type == 'CONTINUOUS':
                                _data_conf['label_values'] = list()
                            _wf_data_conf.put_step_source(_nnid, _ver,_node, _data_conf )

                            # make tfrecord for multi Threading
                            if _multi_node_flag == True:
                                skip_header = False
                                # Todo Have to remove if production
                                self.save_tfrecord(file_path, self.data_store_path, skip_header, df_csv_read,_label, _labe_type)

                    dir = self.data_src_path+"/backup"
                    if not os.path.exists(dir):
                        os.makedirs(dir)
                        #os.mkdir(self.data_src_path+"/backup")

                    file_name_bk = strftime("%Y-%m-%d-%H:%M:%S", gmtime()) + ".csvbk"
                    shutil.copy(file_path,self.data_src_path+"/backup/"+file_name_bk )
                    os.remove(file_path) #승우씨것
            except Exception as e:
                logging.error("Datanode making h5 or tfrecord error".format(e))
                raise Exception(e)
            logging.info("Data node end : {0}".format(conf_data['node_id']))
            return None
        except Exception as e:
            raise Exception(e)