def main(): """ Launches text to speech (inference). Inference is executed on a single GPU. """ parser = argparse.ArgumentParser(description='PyTorch Tacotron 2 Inference') parser = parse_args(parser) args, _ = parser.parse_known_args() LOGGER.set_model_name("Tacotron2_PyT") LOGGER.set_backends([ dllg.StdOutBackend(log_file=None, logging_scope=dllg.TRAIN_ITER_SCOPE, iteration_interval=1), dllg.JsonBackend(log_file=args.log_file, logging_scope=dllg.TRAIN_ITER_SCOPE, iteration_interval=1) ]) LOGGER.register_metric("tacotron2_frames_per_sec", metric_scope=dllg.TRAIN_ITER_SCOPE) LOGGER.register_metric("tacotron2_latency", metric_scope=dllg.TRAIN_ITER_SCOPE) LOGGER.register_metric("latency", metric_scope=dllg.TRAIN_ITER_SCOPE) model = load_and_setup_model(parser, args) log_hardware() log_args(args) if args.include_warmup: sequences = torch.randint(low=0, high=148, size=(1,50), dtype=torch.long).cuda() text_lengths = torch.IntTensor([sequence.size(1)]).cuda().long() for i in range(3): with torch.no_grad(): _, mels, _, _, mel_lengths = model.infer(sequences, text_lengths) os.makedirs(args.output, exist_ok=True) LOGGER.iteration_start() measurements = {} anchor_dirs = [os.path.join(args.dataset_path, anchor) for anchor in args.anchor_dirs] metadatas = [load_metadata(anchor) for anchor in anchor_dirs] with torch.no_grad(), MeasureTime(measurements, "tacotron2_time"): for speaker_id in range(len(anchor_dirs)): metadata = metadatas[speaker_id] for mel_path, text in tqdm(metadata): seq = text_to_sequence(text, speaker_id, ['basic_cleaners']) seqs = torch.from_numpy(np.stack(seq)).unsqueeze(0) seq_lens = torch.IntTensor([len(text)]) melspec = torch.from_numpy(np.load(mel_path)) target = melspec[:, ::args.reduction_factor] targets = torch.from_numpy(np.stack(target)).unsqueeze(0) target_lengths = torch.IntTensor([target.shape[1]]) inputs = (to_gpu(seqs).long(), to_gpu(seq_lens).int(), to_gpu(targets).float(), to_gpu(target_lengths).int()) _, mel_outs, _, _ = model(inputs) fname = os.path.basename(mel_path) np.save(os.path.join(args.output, fname), mel_outs[0, :, :melspec.shape[1]], allow_pickle=False) LOGGER.log(key="tacotron2_latency", value=measurements['tacotron2_time']) LOGGER.log(key="latency", value=(measurements['tacotron2_time'])) LOGGER.iteration_stop() LOGGER.finish()
def __init__(self, args, anchor_dirs): self.speaker_num = len(anchor_dirs) self.meta_dirs = [ os.path.join(args.dataset_path, anchor_dirs[i]) for i in range(self.speaker_num) ] self.metadatas = [ load_metadata(meta_dir) for meta_dir in self.meta_dirs ] self.offsets = [0] * self.speaker_num self.text_cleaners = args.text_cleaners self.sampling_rate = args.sampling_rate self.load_mel_from_disk = args.load_mel_from_disk self.stft = TacotronSTFT(args.filter_length, args.hop_length, args.win_length, args.n_mel_channels, args.sampling_rate, args.mel_fmin, args.mel_fmax) random.seed(1234) for i in range(self.speaker_num): random.shuffle(self.metadatas[i])
def main(): """ Launches text to speech (inference). Inference is executed on a single GPU. """ parser = argparse.ArgumentParser( description='PyTorch Tacotron 2 Inference') parser = parse_training_args(parser) args, _ = parser.parse_known_args() LOGGER.set_model_name("Tacotron2_PyT") LOGGER.set_backends([ dllg.StdOutBackend(log_file=None, logging_scope=dllg.TRAIN_ITER_SCOPE, iteration_interval=1), dllg.JsonBackend(log_file=args.log_file, logging_scope=dllg.TRAIN_ITER_SCOPE, iteration_interval=1) ]) LOGGER.register_metric("tacotron2_frames_per_sec", metric_scope=dllg.TRAIN_ITER_SCOPE) LOGGER.register_metric("tacotron2_latency", metric_scope=dllg.TRAIN_ITER_SCOPE) LOGGER.register_metric("latency", metric_scope=dllg.TRAIN_ITER_SCOPE) model, args = load_and_setup_model(parser, args) log_hardware() log_args(args) os.makedirs(args.output_dir, exist_ok=True) LOGGER.iteration_start() measurements = {} anchor_dirs = [ os.path.join(args.dataset_path, anchor) for anchor in args.training_anchor_dirs ] metadatas = [load_metadata(anchor) for anchor in anchor_dirs] stft = TacotronSTFT(args.filter_length, args.hop_length, args.win_length, args.n_mel_channels, args.sampling_rate, args.mel_fmin, args.mel_fmax) with torch.no_grad(), MeasureTime(measurements, "tacotron2_time"): for speaker_id in range(len(anchor_dirs)): metadata = metadatas[speaker_id] for npy_path, text in tqdm(metadata): seq = text_to_sequence(text, speaker_id, ['basic_cleaners']) seqs = torch.from_numpy(np.stack(seq)).unsqueeze(0) seq_lens = torch.IntTensor([len(text)]) wav = load_wav_to_torch(npy_path) mel = stft.mel_spectrogram(wav.unsqueeze(0)) mel = mel.squeeze() max_target_len = mel.size(1) - 1 max_target_len += args.n_frames_per_step - max_target_len % args.n_frames_per_step padded_mel = np.pad(mel, [(0, 0), (0, max_target_len - mel.size(1))], mode='constant', constant_values=args.mel_pad_val) target = padded_mel[:, ::args.n_frames_per_step] targets = torch.from_numpy(np.stack(target)).unsqueeze(0) target_lengths = torch.IntTensor([target.shape[1]]) outputs = model.infer( to_gpu(seqs).long(), to_gpu(seq_lens).int(), to_gpu(targets).half(), to_gpu(target_lengths).int()) _, mel_out, _, _ = [ output.cpu() for output in outputs if output is not None ] mel_out = mel_out.squeeze()[:, :mel.size(-1) - 1] assert (mel_out.shape[-1] == wav.shape[-1] // args.hop_length) fname = os.path.basename(npy_path) np.save(os.path.join(args.output_dir, fname), mel_out, allow_pickle=False) # GTA synthesis # magnitudes = stft.inv_mel_spectrogram(mel_out.squeeze()) # wav = griffin_lim(magnitudes, stft.stft_fn, 60) # save_wav(wav, os.path.join(args.output_dir, 'eval.wav')) LOGGER.log(key="tacotron2_latency", value=measurements['tacotron2_time']) LOGGER.log(key="latency", value=(measurements['tacotron2_time'])) LOGGER.iteration_stop() LOGGER.finish()