tf.logging.set_verbosity(tf.logging.INFO) lr_params = lr_default_params() config = estimator_default_config() ds_obj = lr_params['ds_obj'] model_dir = lr_params['model_dir'] num_epochs = 20 batch_size = 32 model_params = lr_params['model_params'] print(model_params) if os.path.exists(model_dir): shutil.rmtree(model_dir) # clean model_dir model_fn = make_model_fn(lr_arch_fn) LR = tf.estimator.Estimator(model_fn=model_fn, model_dir=model_dir, params=model_params, config=config) LR.train(lambda: input_fn(ds_obj.file_tr, batch_size, num_epochs, True)) print('eval in tr dataset') LR.evaluate(lambda: input_fn(ds_obj.file_tr, batch_size, 1)) print('eval in va dataset') LR.evaluate(lambda: input_fn(ds_obj.file_va, batch_size, 1)) """ eval in tr dataset INFO:tensorflow:Saving dict for global step 56227: accuracy = 0.78388655, auc = 0.7319471, global_step = 56227, loss = 0.4900751 eval in va dataset INFO:tensorflow:Saving dict for global step 56227: accuracy = 0.7866109, auc = 0.7285157, global_step = 56227, loss = 0.48628032 """
params = deepFM_default_params() config = estimator_default_config() ds_obj = params['ds_obj'] model_dir = params['model_dir'] num_epochs = 20 batch_size = 32 model_params = params['model_params'] print(model_params) if os.path.exists(model_dir): shutil.rmtree(model_dir) # clean model_dir model_fn = make_model_fn(deepFM_arch_fn) deepFM = tf.estimator.Estimator(model_fn=model_fn, model_dir=model_dir, params=model_params, config=config) deepFM.train( lambda: input_fn(ds_obj.file_tr, batch_size, num_epochs, True)) print('eval in tr dataset') deepFM.evaluate(lambda: input_fn(ds_obj.file_tr, batch_size, 1)) print('eval in va dataset') deepFM.evaluate(lambda: input_fn(ds_obj.file_va, batch_size, 1)) """ eval in tr dataset INFO:tensorflow:Saving dict for global step 56227: accuracy = 0.7947467, auc = 0.7710146, global_step = 56227, loss = 0.46117908 eval in va dataset INFO:tensorflow:Saving dict for global step 56227: accuracy = 0.79159194, auc = 0.7528646, global_step = 56227, loss = 0.47020566 """