def init(task, args_ranges): """Sets up the task and argument ranges""" global _task_fun global _task_args_ranges global _num_tasks _task_fun = task _task_args_ranges = args_ranges _num_tasks = num_ids_from_args(_task_args_ranges)
#n_hidden_layers = 1 #hidden_dim_mults = [16, 32, 64] #for optimizer in ['Adam']: ##for optimizer in ['Adam', 'Adamax']: ##for optimizer in ['Adam', Adagrad']: # algorithms.append('ae%d_%%sxR_%s' % (hidden_dim_mult, optimizer)) # algorithms.append('ae%d_%%sxR_dropout12_%s' % (hidden_dim_mult, optimizer)) # algorithms.append('ae%d_%%sxR_dropout25_%s' % (hidden_dim_mult, optimizer)) # algorithms.append('ae%d_%%sxR_batchnorm_%s' % (hidden_dim_mult, optimizer)) #fig_name_suffix = "_ae%d" % (n_hidden_layers) args = (data_sets, input_dims, repr_dims) #tiled = False #tiled = (3, 2) tiled = (num_ids_from_args((input_dims,)), num_ids_from_args((repr_dims,))) figsize = (12.0, 9.0) relative_to = None #relative_to = 'pca' if tiled: plt.figure(figsize=(tiled[0]*figsize[0], tiled[1]*figsize[1])) #for d, data_set in enumerate(data_sets): # print("data = %s" % data_set) # for i, input_dim in enumerate(input_dims): # print(" input_dim = %s" % input_dim) # for r, repr_dim in enumerate(repr_dims): # print(" repr_dim = %d" % repr_dim)
# algorithms algorithms = [ #'pca', 'ae1_64xR_dropout12_Adam', 'ae2_32xR_dropout12_Adam', 'ae3_32xR_dropout12_Adam', ] fig_name_suffix = "" args = (data_sets, repr_dims) #tiled = False #tiled = (3, 2) tiled = (1, num_ids_from_args((repr_dims, ))) figsize = (12.0, 9.0) relative_to = None #relative_to = 'pca' if tiled: plt.figure(figsize=(tiled[0] * figsize[0], tiled[1] * figsize[1])) for i in range(num_ids_from_args(args)): (data_set, repr_dim) = args_from_id(i, args) print("data = %s, repr_dim = %3d" % (data_set, repr_dim)) if tiled: plt.subplot(tiled[1], tiled[0], i + 1) else: