Example #1
0
def test_robust_sampling(conf, training_result):
    """
    Sampling rate vs Reconstruction Quality at fixed noise std.

    Parameters
    ----------
    conf : conf_loader.Conf
        Experiment parameters
    training_result : touple
        Retrun values of function `training`

    Returns
    -------
    srange : np.array
        sampling rate range used
    sampling_rate : float
        sampling rate used
    (bk_ser, fa_ser, rc_ser) : (np.array, np.array, np.array)
        SER for `k-best`, `f_avg` and `LSC` methods
    (bk_mse, fa_mse, rc_mse) : (np.array, np.array, np.array)
        mse for `k-best`, `f_avg` and `LSC` methods
    """
    (sort, tros), (energy, comulated, bands), codebooks = training_result
    n_bands = conf.nbands
    # matrxi to vector (m2v) and vector to matrix (v2m) functions
    m2v, v2m = conf.vect_functions()
    subcfg = conf.testing['robust_sampling']

    # Load testing set
    testing, Testing = common.load_dataset(conf.testingset_path(),
                                           conf.fformat, conf.size())
    FlatTst = m2v(Testing)[:, sort]

    # f_avg sampling pattern
    Omega = energy.argsort()[::-1]

    # lsc sampling pattern
    Omegas = [c.sampling_pattern() for c in codebooks]

    shape = testing[0].shape
    n = np.prod(shape)
    N = len(testing)

    srange = np.logspace(*subcfg['sampling_range'])
    sigma = subcfg['noise_rate']

    bk_ser = np.zeros(len(srange))
    fa_ser = np.zeros(len(srange))
    rc_ser = np.zeros(len(srange))

    bk_mse = np.zeros(len(srange))
    fa_mse = np.zeros(len(srange))
    rc_mse = np.zeros(len(srange))

    print('Sampling rate at fixed noise test:')
    for i, rate in enumerate(srange):
        print(f'\r {i+1:3d}/{len(srange)}', flush=True, end='')
        M = int(round(n * rate))
        m = int(round(M / n_bands))
        ms = lsc.num_samples(bands, m)
        M = np.sum(ms)
        smalls = [omega[:y] for omega, y in zip(Omegas, ms)]

        for idx in range(N):
            reference = common.norm(testing[idx])
            X = FlatTst[idx] + common.noise(sigma, n)

            Xsbs = lsc.split(X, bands)
            Ysbs = lsc.sub_sample(Xsbs, Omegas, m)
            recovered = [
                codebooks[b].reconstruct(Ysbs[b], smalls[b])
                for b in range(len(bands))
            ]
            Y = v2m((lsc.union(recovered))[tros], shape)
            y = common.norm(common.pos(common.ifft2(Y).real))

            BK = X.copy()[tros]
            O = np.abs(BK).argsort()[::-1]
            BK[O[M:]] = 0
            BK = v2m(BK, shape)
            bK = common.norm(common.pos(common.ifft2(BK).real))

            FA = X.copy()[tros]
            FA[Omega[M:]] = 0
            FA = v2m(FA, shape)
            fA = common.norm(common.pos(common.ifft2(FA).real))

            fa_ser[i] += common.SER(reference, fA) / N
            bk_ser[i] += common.SER(reference, bK) / N
            rc_ser[i] += common.SER(reference, y) / N

            fa_mse[i] += mse(reference, fA) / N
            bk_mse[i] += mse(reference, bK) / N
            rc_mse[i] += mse(reference, y) / N
    print(' [done]')
    return srange, sigma, (bk_ser, fa_ser, rc_ser), (bk_mse, fa_mse, rc_mse)
Example #2
0
def test_robust_visual(conf, training_result, idx):
    """
    Noise std vs Reconstruction Quality at fixed sampling rate visual test.

    Parameters
    ----------
    conf : conf_loader.Conf
        Experiment parameters
    training_result : touple
        Retrun values of function `training`
    idx : int
        Id of image to test

    Returns
    -------
    srange : np.array
        noise std range used
    sampling_rate : float
        sampling rate used
    (bk_ser, fa_ser, rc_ser) : (np.array, np.array, np.array)
        SER for `k-best`, `f_avg` and `LSC` methods at different noise std
    (bk_mse, fa_mse, rc_mse) : (np.array, np.array, np.array)
        mse for `k-best`, `f_avg` and `LSC` methods at different noise std
    """
    (sort, tros), (energy, comulated, bands), codebooks = training_result
    n_bands = conf.nbands
    # matrxi to vector (m2v) and vector to matrix (v2m) functions
    m2v, v2m = conf.vect_functions()
    subcfg = conf.testing['robust_reconstruction_visual']

    testing, Testing = common.load_dataset(conf.testingset_path(),
                                           conf.fformat, conf.size())
    FlatTst = m2v(Testing)[:, sort]

    # f_avg sampling pattern
    Omega = energy.argsort()[::-1]

    # lsc sampling pattern
    Omegas = [c.sampling_pattern() for c in codebooks]

    shape = testing[0].shape
    n = np.prod(shape)

    srange = np.logspace(*subcfg['noise_range'])
    sampling_rate = subcfg['sampling_rate']

    W, H = shape
    Wt = W * 3
    Ht = H * len(srange)

    res = np.zeros((Wt, Ht))

    print(f'Robust Reconstruction Quality Visual Test (img {idx}):')
    for i, sigma in enumerate(srange):
        print(f'\r {i+1:3d}/{len(srange)}', flush=True, end='')
        X = FlatTst[idx] + common.noise(sigma, n)

        M = int(round(sampling_rate * n))
        m = int(round(M / n_bands))
        ms = lsc.num_samples(bands, m)
        M = np.sum(ms)

        smalls = [omega[:y] for omega, y in zip(Omegas, ms)]

        Xsbs = lsc.split(X, bands)
        Ysbs = lsc.sub_sample(Xsbs, Omegas, m)

        recovered = [
            codebooks[b].reconstruct(Ysbs[b], smalls[b])
            for b in range(len(bands))
        ]
        Y = v2m((lsc.union(recovered))[tros], shape)
        y = common.norm(common.pos(common.ifft2(Y).real))

        BK = X.copy()[tros]
        O = np.abs(BK).argsort()[::-1]
        BK[O[M:]] = 0
        BK = v2m(BK, shape)
        bK = common.norm(common.pos(common.ifft2(BK).real))

        FA = X.copy()[tros]
        FA[Omega[M:]] = 0
        FA = v2m(FA, shape)
        fA = common.norm(common.pos(common.ifft2(FA).real))

        res[:W, H * i:H * (i + 1)] = bK
        res[W:2 * W, H * i:H * (i + 1)] = fA
        res[2 * W:3 * W, H * i:H * (i + 1)] = y
    print('\t[done]')
    return srange, res